Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Langdon is active.

Publication


Featured researches published by Tim Langdon.


The Plant Cell | 2002

Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon

Zhukan K. Cheng; Fenggao G. Dong; Tim Langdon; Shu Ouyang; C. Robin Buell; Minghong Gu; Frederick R. Blattner; Jiming Jiang

The centromere of eukaryotic chromosomes is essential for the faithful segregation and inheritance of genetic information. In the majority of eukaryotic species, centromeres are associated with highly repetitive DNA, and as a consequence, the boundary for a functional centromere is difficult to define. In this study, we demonstrate that the centers of rice centromeres are occupied by a 155-bp satellite repeat, CentO, and a centromere-specific retrotransposon, CRR. The CentO satellite is located within the chromosomal regions to which the spindle fibers attach. CentO is quantitatively variable among the 12 rice centromeres, ranging from 65 kb to 2 Mb, and is interrupted irregularly by CRR elements. The break points of 14 rice centromere misdivision events were mapped to the middle of the CentO arrays, suggesting that the CentO satellite is located within the functional domain of rice centromeres. Our results demonstrate that the CentO satellite may be a key DNA element for rice centromere function.


The EMBO Journal | 1997

Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA

Adriana Ravagnani; Lisette Gorfinkiel; Tim Langdon; George Diallinas; Elisabeth Adjadj; Stéphane Demais; Diana Gorton; Herbert N. Arst; Claudio Scazzocchio

A change of a universally conserved leucine to valine in the DNA‐binding domain of the GATA factor AreA results in inability to activate some AreA‐dependent promoters, including that of the uapA gene encoding a specific urate–xanthine permease. Some other AreA‐ dependent promoters become able to function more efficiently than in the wild‐type context. A methionine in the same position results in a less extreme, but opposite effect. Suppressors of the AreA(Val) mutation mapping in the uapA promoter show that the nature of the base in the first position of an HGATAR (where H stands for A, T or C) sequence determines the relative affinity of the promoter for the wild‐type and mutant forms of AreA. In vitro binding studies of wild‐type and mutant AreA proteins are completely consistent with the phenotypes in vivo. Molecular models of the wild‐type and mutant AreA–DNA complexes derived from the atomic coordinates of the GATA‐1–AGATAA complex account both for the phenotypes observed in vivo and the binding differences observed in vitro. Our work extends the consensus of physiologically relevant binding sites from WGATAR to HGATAR, and provides a rationale for the almost universal evolutionary conservation of leucine at the seventh position of the Zn finger of GATA factors. This work shows inter alia that the sequence CGATAGagAGATAA, comprising two almost adjacent AreA‐binding sites, is sufficient to ensure activation of transcription of the uapA gene.


The EMBO Journal | 1996

Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3' untranslated region of its mRNA.

Adam Platt; Tim Langdon; Herbert N. Arst; D. Kirk; D. Tollervey; J. M. M. Sanchez; M. X. Caddick

AREA is a GATA transcription factor which mediates nitrogen metabolite repression in Aspergillus nidulans in response to intracellular glutamine levels. We have identified and localized three elements important to modulation of AREA function: a region of 13 residues within the DNA‐binding GATA domain which forms a putative extended loop structure, the 12 C‐terminal residues, and sequences within a 218 nucleotide region of the 3′ UTR. The 12 C‐terminal residues are also required for transcriptional activation at a subset of loci under areA control. Specific deletions within the 3′ UTR and the C‐terminus cause similar levels of derepression and the mutations are additive, implicating two principal signal transduction pathways. The contribution of the 3′ UTR to AREA modulation is effected at the level of transcript stability such that the areA mRNA is at least five times more stable under nitrogen‐derepressing conditions than it is under repressing growth conditions.


Annals of Botany | 2012

Evolution and taxonomic split of the model grass Brachypodium distachyon

Pilar Catalán; Jochen Müller; Robert Hasterok; Glyn Jenkins; Luis A. J. Mur; Tim Langdon; Alexander Betekhtin; Dorota Siwinska; Manuel Pimentel; Diana López-Álvarez

BACKGROUND AND AIMS Brachypodium distachyon is being widely investigated across the world as a model plant for temperate cereals. This annual plant has three cytotypes (2n = 10, 20, 30) that are still regarded as part of a single species. Here, a multidisciplinary study has been conducted on a representative sampling of the three cytotypes to investigate their evolutionary relationships and origins, and to elucidate if they represent separate species. METHODS Statistical analyses of 15 selected phenotypic traits were conducted in individuals from 36 lines or populations. Cytogenetic analyses were performed through flow cytometry, fluorescence in situ hybridization (FISH) with genomic (GISH) and multiple DNA sequences as probes, and comparative chromosome painting (CCP). Phylogenetic analyses were based on two plastid (ndhF, trnLF) and five nuclear (ITS, ETS, CAL, DGAT, GI) genes from different Brachypodium lineages, whose divergence times and evolutionary rates were estimated. KEY RESULTS The phenotypic analyses detected significant differences between the three cytotypes and demonstrated stability of characters in natural populations. Genome size estimations, GISH, FISH and CCP confirmed that the 2n = 10 and 2n = 20 cytotypes represent two different diploid taxa, whereas the 2n = 30 cytotype represents the allotetraploid derived from them. Phylogenetic analysis demonstrated that the 2n = 20 and 2n = 10 cytotypes emerged from two independent lineages that were, respectively, the maternal and paternal genome donors of the 2n = 30 cytotype. The 2n = 20 lineage was older and mutated significantly faster than the 2n = 10 lineage and all the core perennial Brachypodium species. CONCLUSIONS The substantial phenotypic, cytogenetic and molecular differences detected among the three B. distachyon sensu lato cytotypes are indicative of major speciation processes within this complex that allow their taxonomic separation into three distinct species. We have kept the name B. distachyon for the 2n = 10 cytotype and have described two novel species as B. stacei and B. hybridum for, respectively, the 2n = 20 and 2n = 30 cytotypes.


Theoretical and Applied Genetics | 2001

Ribosomal DNA is an effective marker of Brassica chromosomes

R. Hasterok; Glyn Jenkins; Tim Langdon; R. N. Jones; J. Maluszynska

Abstract  Simultaneous fluorescence in situ hybridisation with 5S and 25S rDNA probes enables the discrimination of a substantial number of chromosomes of the complement of all diploid and tetraploid Brassica species of the ”U-triangle”, and provides new chromosomal landmarks for the identification of some chromosomes of this genus which were hitherto indistinguishable. Twelve out of 20 chromosomes can be easily identified in diploid Brassica campestris (AA genome), eight out of 16 in Brassica nigra (BB genome), and six out of 18 in Brassica oleracea (CC genome). Furthermore, just two rDNA markers permit 20 out of 36 chromosomes to be distinguished and assigned to either the A or B genomes of the allotetraploid Brassica juncea, and 18 out of 38 chromosomes identified and assigned to the A or C genomes of the allotetraploid Brassica napus. The number of chromosomes bearing rDNA sites in the tetraploids is not in all cases simply the sum of the numbers of sites in their diploid ancestors. This observation is discussed in terms of the phylogeny and variability within the genomes of the species of this group.


Applied Biochemistry and Biotechnology | 2006

Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar targeted expression of a fungal ferulic acid esterase

Marcia M. de O. Buanafina; Tim Langdon; Barbara Hauck; Susan Dalton; Phillip Morris

In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose. Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric and dimeric ferulic acids from arabinoxylans making the cell wall more susceptible to further enzymatic attack. Transgenic plants of Lolium multiflorum expressing a ferulic acid esterase gene from Aspergillus niger, targeted to the vacuole under a constitutive rice actin promoter, have been produced following microprojectile bombardment of embryogenic cell cultures. The level of FAE activity was found to vary with leaf age and was highest in young leaves. FAE expression resulted in the release of monomeric and dimeric ferulic acids from cell walls on cell death and this was enhanced severalfold by the addition of exogenous β-1,4-endoxylanase. We also show that a number of plants expressing FAE had reduced levels of cell wall esterified monomeric and dimeric ferulates and increased in vitro dry-matter digestibility compared with nontransformed plants.


Plant Biotechnology Journal | 2010

Targeting expression of a fungal ferulic acid esterase to the apoplast, endoplasmic reticulum or golgi can disrupt feruloylation of the growing cell wall and increase the biodegradability of tall fescue (Festuca arundinacea).

Marcia M. de O. Buanafina; Tim Langdon; Barbara Hauck; Susan Dalton; Emma Timms-Taravella; Phillip Morris

In the cell walls of grasses, ferulic acid is esterified to arabinoxylans and undergoes oxidative reactions to form ferulates dimers, trimers and oligomers. Feruloylation of arabinoxylan is considered important not only because it leads to cross-linked xylans but also because ferulates may act as a nucleating site for the formation of lignin and hence link arabinoxylans to lignin by forming a lignin-ferulate-arabinoxylan complex. Such cross-linking is among the main factors inhibiting the release of fermentable carbohydrates from grasses either for ruminant nutrition or for biofuel production. We have found that significant reductions in the levels of monomeric and dimeric phenolics can be achieved in the growing cell walls during plant development in leaves of Festuca arundinacea by constitutive intracellular targeted expression of Aspergillus niger ferulic acid esterase (FAEA). We propose that this occurred by directly disrupting ester bonds linking phenolics to cell wall polysaccharides by apoplast targeting or by preventing excessive feruloylation of cell wall carbohydrates prior to their incorporation into the cell wall, by targeting to the Golgi membrane system. Plants with lower cell wall ferulate levels, which showed increased digestibility and increased rates of cellulase-mediated release of fermentable sugars, were identified. Targeting FAE to the Golgi was found to be more effective than targeting to the ER, which supports the current theories of the Golgi as the site of feruloylation of arabinoxylans. It is concluded that targeting FAEA expression to the Golgi or apoplast is likely to be an effective strategy for improving wall digestibility in grass species used for fodder or cellulosic ethanol production.


Chromosoma | 2011

Compact genomes and complex evolution in the genus Brachypodium

Elzbieta Wolny; Karolina Lesniewska; Robert Hasterok; Tim Langdon

The temperate annual grass Brachypodium distachyon is a diploid species with a chromosome base number of 5. It is strikingly different from other Eurasian species of the genus, which are perennial and often polyploid, with the diploids typically having base numbers of 8 or 9. Previously, phylogenies indicated that B. distachyon split from the other species early in the evolution of the genus, while its genome sequence revealed that extensive synteny on a chromosomal scale had been maintained with rice, a tropical grass with a base number of 12. Here we show evidence that B. distachyon may have a homoploid origin, involving ancestral interspecific hybridisation, although it does not appear to be a component of any of the perennial Eurasian allopolyploids. Using a cytogenetic approach, we show that dysploidy in Brachypodium has not followed a simple progression.


Molecular Genetics and Genomics | 1996

Mutational analysis of the C-terminal region of AREA, the transcription factor mediating nitrogen metabolite repression inAspergillus nidulans

Adam Platt; Adriana Ravagnani; Herb Arst; Dennis Kirk; Tim Langdon; Mark X. Caddick

InAspergillus nidulans the positive-acting, wide domain regulatory geneareA mediates nitrogen metabolite repression. Previous analysis demonstrated that the C-terminal 153 residues of theareA product (AREA) are inessential for at least partial expression of most genes subject to regulation byareA. Paradoxically,areAr2, a −1 frameshift replacing the wild-type 122 C-terminal residues with a mutant peptide of 117 amino acids, leads to general loss of function. To determine the basis for theareAr2 mutant phenotype, and as a means of delineating functional domains within the C-terminal region of AREA, we have selected and characterisedareAr2 revertants. Deletion analysis, utilising direct gene replacement, extended this analysis. A mutantareA product truncated immediately after the last residue of the highly conserved GATA (DNA-binding) domain retains partial function. TheareAr2 product retains some function with respect to the expression ofuaZ (encoding urate oxidase) and the mutant allele is partially dominant with respect to nitrate reductase levels. Consistent with theareAr2 product having a debilitating biological activity, we have demonstrated that a polypeptide containing both the wild-type DNA-binding domain and the mutant C-terminus of AREA2 is able to bind DNA in vitro but no longer shows specificity for GATA sequences.


Plant Molecular Biology Reporter | 2013

Genetic Diversity and Population Structure Among Oat Cultivars and Landraces

Gracia Montilla-Bascón; Javier Sánchez-Martín; Nicolas Rispail; Diego Rubiales; Luis A. J. Mur; Tim Langdon; Irene Griffiths; Catherine J. Howarth; Elena Prats

In this study, genetic diversity among 177 oat (Avena sativa L.) accessions including both white and red oat landraces and 36 commercial cultivars was studied for simple sequence repeat (SSR) loci. Thirty-one genomic and expressed sequence tags (EST)-derived primer pairs were selected according to high polymorphism from an initial 66 SSR batch. Markers revealed a high level of polymorphism, detecting a total of 454 alleles. The average gene diversity for the whole sample was 0.29. Genetic similarity, calculated using the Dice coefficient, was used for cluster analysis, and principal component analysis was also applied. In addition, population structure using a Bayesian clustering approach identified discrete subpopulation based on allele frequency and showed similar clustering of oat genotypes in four groups. Accessions could be classified into four main clusters that clearly separated the commercial cultivars, the red oat landraces and two clusters of white oat landraces. Cultivars showed less diversity than the landraces indicating a reduction of genetic diversity during breeding, whereas white oat landraces showed higher diversity than red ones. The average polymorphic information content of 0.80 for the SSR loci indicated the usefulness of many of the SSR for genotype identification. In particular, two markers, MAMA5 and AM04, with a total of 50 alleles and a high discrimination power (>0.90), were sufficient to discriminate among all commercial cultivars studied highlighting their potential use for variety identification.

Collaboration


Dive into the Tim Langdon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. A. Cowan

Aberystwyth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Prats

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gracia Montilla-Bascón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Sánchez-Martín

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge