Tim M. Wintermantel
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim M. Wintermantel.
Neuron | 2006
Tim M. Wintermantel; Rebecca E. Campbell; Robert Porteous; Dagmar Bock; Hermann Josef Gröne; Martin G. Todman; Kenneth S. Korach; Erich Greiner; Cristian A. Pérez; Günther Schütz; Allan E. Herbison
The mechanisms through which estrogen regulates gonadotropin-releasing hormone (GnRH) neurons to control mammalian ovulation are unknown. We found that estrogen positive feedback to generate the preovulatory gonadotropin surge was normal in estrogen receptor beta knockout (ERbeta) mutant mice, but absent in ERalpha mutant mice. An ERalpha-selective compound was sufficient to generate positive feedback in wild-type mice. As GnRH neurons do not express ERalpha, estrogen positive feedback upon GnRH neurons must be indirect in nature. To establish the cell type responsible, we generated a neuron-specific ERalpha mutant mouse line. These mice failed to exhibit estrogen positive feedback, demonstrating that neurons expressing ERalpha are critical. We then used a GnRH neuron-specific Pseudorabies virus (PRV) tracing approach to show that the ERalpha-expressing neurons innervating GnRH neurons are located within rostral periventricular regions of the hypothalamus. These studies demonstrate that ovulation is driven by estrogen actions upon ERalpha-expressing neuronal afferents to GnRH neurons.
The EMBO Journal | 2005
Na Li; Yu Zhang; Matthew J. Naylor; Franziska Schatzmann; Francisca Maurer; Tim M. Wintermantel; Günther Schüetz; Ulrich Mueller; Charles H. Streuli; Nancy E. Hynes
Integrin–extracellular matrix interactions play important roles in the coordinated integration of external and internal cues that are essential for proper development. To study the role of β1 integrin in the mammary gland, Itgβ1flox/flox mice were crossed with WAPiCre transgenic mice, which led to specific ablation of β1 integrin in luminal alveolar epithelial cells. In the β1 integrin mutant mammary gland, individual alveoli were disorganized resulting from alterations in cell–basement membrane associations. Activity of focal adhesion kinase (FAK) was also decreased in mutant mammary glands. Luminal cell proliferation was strongly inhibited in β1 integrin mutant glands, which correlated with a specific increase of p21Cip1 expression. In a p21Cip1 null background, there was a partial rescue of BrdU incorporation, providing in vivo evidence linking p21Cip1 to the proliferative defect observed in β1 integrin mutant glands. A connection between p21Cip1 and β1 integrin as well as FAK was also established in primary mammary cells. These results point to the essential role of β1 integrin signaling in mammary epithelial cell proliferation.
Molecular Endocrinology | 2009
Dörthe L. Ahlbory-Dieker; Brenda D. Stride; Gabriele Leder; Jenny Schkoldow; Susanne Trölenberg; Henrik Seidel; Christiane Otto; Anette Sommer; Malcolm G. Parker; Günther Schütz; Tim M. Wintermantel
The majority of the biological effects of estrogens in the reproductive tract are mediated by estrogen receptor (ER)alpha, which regulates transcription by several mechanisms. Because the tissue-specific effects of some ERalpha ligands may be caused by tissue-specific transcriptional mechanisms of ERalpha, we aimed to identify the contribution of DNA recognition to these mechanisms in two clinically important target organs, namely uterus and liver. We used a genetic mouse model that dissects DNA binding-dependent vs. independent transcriptional regulation elicited by ERalpha. The EAAE mutant harbors amino acid exchanges at four positions of the DNA-binding domain (DBD) of ERalpha. This construct was knocked in the ERalpha gene locus to produce ERalpha((EAAE/EAAE)) mice devoid of a functional ERalpha DBD. The phenotype of the ERalpha((EAAE/EAAE)) mice resembles the general loss-of-function phenotype of alphaER knockout mutant mice with hypoplastic uteri, hemorrhagic ovaries, and impaired mammary gland development. In agreement with this phenotype, the expression pattern of the ERalpha((EAAE/EAAE)) mutant mice in liver obtained by genome-wide gene expression profiling supports the observation of a near-complete loss of estrogen-dependent gene regulation in comparison with the wild type. Further gene expression analyses to validate the results of the microarray data were performed by quantitative RT-PCR. The analyses indicate that both gene activation and repression by estrogen-bound ERalpha rely on an intact DBD in vivo.
The EMBO Journal | 2006
Kate D. Sutherland; François Vaillant; Warren S. Alexander; Tim M. Wintermantel; Natasha C. Forrest; Sheridan L Holroyd; Edward J. McManus; Günther Schütz; Christine J. Watson; Lewis A. Chodosh; Geoffrey J. Lindeman; Jane E. Visvader
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine‐mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3‐deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c‐myc. Moreover, induction of c‐myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c‐myc target genes, E2F‐1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro‐apoptotic pathways that act in the developing mammary gland and provide evidence that c‐myc regulates apoptosis during involution.
The Journal of Steroid Biochemistry and Molecular Biology | 2005
Tim M. Wintermantel; Stefan Berger; Erich Greiner; Günther Schütz
Corticosteroid hormones regulate a variety of developmental, physiological and pathological processes via their cognate receptors, the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). Using modern genetic technologies, including bacterial artificial chromosome-based transgenesis and conditional gene targeting, we have generated a panel of tissue-specific and function-selective mutations of the two corticosteroid hormone receptors in the mouse. These mouse models have allowed us to gain new insights into corticosteroid hormone signaling in vivo. By investigating a hepatocyte-specific GR mutation, it has been possible to define a novel biological action of GR, namely to function as a coactivator for Stat5-mediated gene transcription in the control of body growth. The investigation of brain-specific mutations have not only allowed us to better understand hypothalamo-pituitary-adrenal (HPA) axis regulation by glucocorticoids, but also to analyse corticosteroid action in various aspects of brain function like anxiety-related or addiction-related behaviour, and learning and memory. A function-selective mutation in the GR has allowed us to dissect different pathways in the gene expression regulation by this receptor, namely to separate DNA response element-binding dependent gene activation from response element-independent gene regulation via interference with other transcription factors. These different transcriptional activities of GR play an important role in glucocorticoid-mediated immunosuppression.
PLOS ONE | 2012
Sebastian Seitz; Johannes Keller; Arndt F. Schilling; Anke Jeschke; Robert P. Marshall; Brenda D. Stride; Tim M. Wintermantel; Frank Timo Beil; Michael Amling; Günther Schütz; Jan Tuckermann; Thorsten Schinke
Postmenopausal osteoporosis is characterized by declining estrogen levels, and estrogen replacement therapy has been proven beneficial for preventing bone loss in affected women. While the physiological functions of estrogen in bone, primarily the inhibition of bone resorption, have been studied extensively, the effects of pharmacological estrogen administration are still poorly characterized. Since elevated levels of follicle-stimulating hormone (FSH) have been suggested to be involved in postmenopausal bone loss, we investigated whether the skeletal response to pharmacological estrogen administration is mediated in a FSH-dependent manner. Therefore, we treated wildtype and FSHβ-deficicent (Fshb−/−) mice with estrogen for 4 weeks and subsequently analyzed their skeletal phenotype. Here we observed that estrogen treatment resulted in a significant increase of trabecular and cortical bone mass in both, wildtype and Fshb−/− mice. Unexpectedly, this FSH-independent pharmacological effect of estrogen was not caused by influencing bone resorption, but primarily by increasing bone formation. To understand the cellular and molecular nature of this osteo-anabolic effect we next administered estrogen to mouse models carrying cell specific mutant alleles of the estrogen receptor alpha (ERα). Here we found that the response to pharmacological estrogen administration was not affected by ERα inactivation in osteoclasts, while it was blunted in mice lacking the ERα in osteoblasts or in mice carrying a mutant ERα incapable of DNA binding. Taken together, our findings reveal a previously unknown osteo-anabolic effect of pharmacological estrogen administration, which is independent of FSH and requires DNA-binding of ERα in osteoblasts.
Molecular Endocrinology | 2005
Tim M. Wintermantel; Dagmar Bock; Verena Fleig; Erich Greiner; Günther Schütz
Endocrinology | 2007
Gaetano Calì; Mariastella Zannini; Patrizia Rubini; Carlo Tacchetti; Barbara D'Andrea; Andrea Affuso; Tim M. Wintermantel; Oreda Boussadia; Daniela Terracciano; Daniel Silberschmidt; Elena Amendola; Mario De Felice; Günther Schütz; Rolf Kemler; Roberto Di Lauro; Lucio Nitsch
Genesis | 2002
Tim M. Wintermantel; Anja K. Mayer; Günther Schütz; Erich Greiner
Hormone and Metabolic Research | 2004
Tim M. Wintermantel; Stefan Berger; Erich Greiner; Günther Schütz