Tim Maisch
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim Maisch.
Lasers in Medical Science | 2007
Tim Maisch
Previous chapters in this volume have focused on fundamental principles and clinical applications of PDT. This chapter will attempt to outline emerging areas of research to identify some new applications that may become useful in the future in clinical practise. The worldwide rise in antibiotic resistance has driven research to the development of novel anti-microbial strategies. Cutaneous diseases caused by MRSA are ideally suited to treatment by anti-microbial photodynamic therapy for eradicating localized infections and for modulating wound healing due to the ability to deliver photosensitizer and light with topical application. The use of photosensitizer and light as an anti-microbial agent against periodontal microbial biofilms should also represent an attractive method of eliminating oral bacteria. Suitable light sources, laser light and non-coherent light will be briefly covered. This chapter will focus on some aspects of anti-microbial photodynamic therapy that appear to be promising for dermatological indications and inactivation of pathogenic bacteria within the oral cavity.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Tim Maisch; Jürgen Baier; Barbara Franz; Max Maier; Michael Landthaler; Rolf-Markus Szeimies; Wolfgang Bäumler
New antibacterial strategies are required in view of the increasing resistance of bacteria to antibiotics. One promising technique involves the photodynamic inactivation of bacteria. Upon exposure to light, a photosensitizer in bacteria can generate singlet oxygen, which oxidizes proteins or lipids, leading to bacteria death. To elucidate the oxidative processes that occur during killing of bacteria, Staphylococcus aureus was incubated with a standard photosensitizer, and the generation and decay of singlet oxygen was detected directly by its luminescence at 1,270 nm. At low bacterial concentrations, the time-resolved luminescence of singlet oxygen showed a decay time of 6 ± 2 μs, which is an intermediate time for singlet oxygen decay in phospholipids of membranes (14 ± 2 μs) and in the surrounding water (3.5 ± 0.5 μs). Obviously, at low bacterial concentrations, singlet oxygen had sufficient access to water outside of S. aureus by diffusion. Thus, singlet oxygen seems to be generated in the outer cell wall areas or in adjacent cytoplasmic membranes of S. aureus. In addition, the detection of singlet oxygen luminescence can be used as a sensor of intracellular oxygen concentration. When singlet oxygen luminescence was measured at higher bacterial concentrations, the decay time increased significantly, up to ≈40 μs, because of oxygen depletion at these concentrations. This observation is an important indicator that oxygen supply is a crucial factor in the efficacy of photodynamic inactivation of bacteria, and will be of particular significance should this approach be used against multiresistant bacteria.
Photochemical and Photobiological Sciences | 2004
Tim Maisch; Rolf-Markus Szeimies; Giulio Jori; Christoph Abels
Photodynamic therapy (PDT) appears to be endowed with several favourable features for the treatment of localized microbial infections, especially after the advent of cationic photosensitising agents (phenothiazines, meso-substituted porphyrins, polylysine-bound chlorins) which properly interact with the outer wall at the surface of several types of bacterial and yeast cells, increase their permeability, and allow significant amounts of photosensitizer to be accumulated at the level of the cytoplasmic membrane. These photosensitisers are characterized by a broad spectrum of activity, being effective toward both wild strain and antibiotic-resistant gram-positive and gram-negative bacteria and yeasts. In general, extensive eradication of pathogens can be achieved under mild irradiation conditions, such as short incubation times and low fluence-rates, which guarantees a high degree of selectivity in comparison with the main constituents of host tissues, such as keratinocytes and fibroblasts. Moreover, the photosensitised inactivation of microorganisms is typically a multi-target process; as a consequence, the selection of photoresistant microbial strains is very unlikely and has not been experimentally observed so far. Possible initial targets of antimicrobial PDT applications include periodontal diseases, impetigo, atopic dermatitis, acne vulgaris, infected wounds, and superinfected posriatic plaques.
Investigative Ophthalmology & Visual Science | 2008
Eva Engel; Schraml R; Tim Maisch; Karin Kobuch; Burkhard König; Rolf-Markus Szeimies; Jost Hillenkamp; Wolfgang Bäumler; Rudolf Vasold
PURPOSE To investigate the light-induced decomposition of indocyanine green (ICG) and to test the cytotoxicity of light-induced ICG decomposition products. METHODS ICG in solution was irradiated with laser light, solar light, or surgical endolight. The light-induced decomposition of ICG was analyzed by high-performance liquid chromatography (HPLC) and mass spectrometry. Porcine retinal pigment epithelial (RPE) cells were incubated with the light-induced decomposition products of ICG, and cell viability was measured by trypan blue exclusion assay. RESULTS Independent of the light source used, singlet oxygen (photodynamic type 2 reaction) is generated by ICG leading to dioxetanes by [2+2]-cycloaddition of singlet oxygen. These dioxetanes thermally decompose into several carbonyl compounds. The decomposition products were identified by mass spectrometry. The decomposition of ICG was inhibited by adding sodium azide, a quencher of singlet oxygen. Incubation with ICG decomposition products significantly reduced the viability of RPE cells in contrast to control cells. CONCLUSIONS ICG is decomposed by light within a self-sensitized photo oxidation. The decomposition products reduce the viability of RPE cells in vitro. The toxic effects of decomposed ICG should be further investigated under in vivo conditions.
PLOS ONE | 2012
Tim Maisch; Tetsuji Shimizu; Yang-Fang Li; Julia Heinlin; Sigrid Karrer; Gregor E. Morfill; Julia L. Zimmermann
In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue.
Frontiers in Microbiology | 2014
Fabian Cieplik; Laura Tabenski; Wolfgang Buchalla; Tim Maisch
With increasing numbers of antibiotic-resistant pathogens all over the world there is a pressing need for strategies that are capable of inactivating biofilm-state pathogens with less potential of developing resistances in pathogens. Antimicrobial strategies of that kind are especially needed in dentistry in order to avoid the usage of antibiotics for treatment of periodontal, endodontic or mucosal topical infections caused by bacterial or yeast biofilms. One possible option could be the antimicrobial photodynamic therapy (aPDT), whereby the lethal effect of aPDT is based on the principle that visible light activates a photosensitizer (PS), leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induce phototoxicity immediately during illumination. Many compounds have been described as potential PS for aPDT against bacterial and yeast biofilms so far, but conflicting results have been reported. Therefore, the aim of the present review is to outline the actual state of the art regarding the potential of aPDT for inactivation of biofilms formed in vitro with a main focus on those formed by oral key pathogens and structured regarding the distinct types of PS.
Fungal Biology | 2012
Fernanda Pereira Gonzales; Tim Maisch
Antimicrobial photodynamic therapy (APDT) combines a non-toxic dye, termed photosensitizer, which is activated by visible light of appropriate wavelength which will produce reactive oxygen species (ROS). These ROS will react with cellular components inducing oxidative processes, leading to cell death. A wide range of microorganisms, have already showed susceptibility to APDT. Therefore, this treatment might consist in an alternative for the management of fungal infections that is mainly caused by biofilms, since they respond poorly to conventional antibiotics and may play a role in persistent infections. Biofilms are the leading cause of microbial infections in humans, thus representing a serious problem in health care. Candida albicans is the main type of fungi able to form biofilms, which cause superficial skin and mucous membrane infections as well as deep-seated mycoses, particularly in immunocompromised patients. In these patients, invasive infections are often associated with high morbidity and mortality. Furthermore, the increase in antifungal resistance has decreased the efficacy of conventional therapies. Treatments are time-consuming and thus demanding on health care budgets. Additionally, current antifungal drugs only have a limited spectrum of action and toxicity. The use of APDT as an antimicrobial topical agent against superficial and cutaneous diseases represents an effective method for eliminating microorganisms.
British Journal of Dermatology | 2006
Philipp Babilas; Elisabeth Kohl; Tim Maisch; H. Bäcker; B. Gross; A. L. Branzan; Wolfgang Bäumler; Michael Landthaler; Sigrid Karrer; R.-M. Szeimies
Background Photodynamic therapy (PDT) with 5‐aminolaevulinic acid (ALA) is an effective and safe treatment option for the treatment of actinic keratosis (AK). Incoherent lamps are often used, matching the absorption maxima of ALA.
Experimental Dermatology | 2010
Bernadette Forster; Annette Klein; Rolf-Markus Szeimies; Tim Maisch
Please cite this paper as: Penetration enhancement of two topical 5‐aminolaevulinic acid formulations for photodynamic therapy by erbium:YAG laser ablation of the stratum corneum: continuous versus fractional ablation. Experimental Dermatology 2010; 19: 806–812.
Journal Der Deutschen Dermatologischen Gesellschaft | 2011
Tim Maisch; Steffen Hackbarth; Johannes Regensburger; Ariane Felgenträger; Wolfgang Bäumler; Michael Landthaler; Beate Röder
The increasing resistance of bacteria against antibiotics is one of the most important clinical challenges of the 21st century. Within the gram‐positive bacteria the methicillin‐resistant Staphylococcus aureus and Enterococcus faecium represent the major obstacle to successful therapy. Apart from the development of new antibiotics it requires additional differently constituted approaches, like photodynamic inactivation in order to have further effective treatment options against bacteria available. Certain dyes, termed photosensitizers, are able to store the absorbed energy in long‐lived electronic states upon light activation with appropriate wavelengths and thus make these states available for chemical activation of the immediate surroundings. The interaction with molecular oxygen, which leads to different, very reactive and thus cytotoxic oxygen species, is highlighted. In this review the application of the photodynamic inactivation of bacteria will be discussed regarding the possible indications in dermatology, like localized skin and wound infections or the reduction of nosocomial colonization with multi‐resistant bacteria on the skin. The crucial advantage of the local application of photosensitizers followed by irradiation of the area of interest is the fact that independent of the resistance pattern of a bacterium a direct inactivation takes place similarly as with an antiseptic. In this review the physical‐chemical and biological basics of photo‐dynamic inactivation of bacteria (PIB) will be discussed as well as the possible dermatological indications.