Tim Paek
Microsoft
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tim Paek.
Communications of The ACM | 2003
Eric Horvitz; Carl M. Kadie; Tim Paek; David O. Hovel
Creating computing and communication systems that sense and reason about human attention by fusing together information from multiple streams.
international conference on user modeling, adaptation, and personalization | 1999
Eric Horvitz; Tim Paek
We describe representation, inference strategies, and control procedures employed in an automated conversation system named the Bayesian Receptionist. The prototype is focused on the domain of dialog about goals typically handled by receptionists at the front desks of buildings on the Microsoft corporate campus. The system employs a set of Bayesian user models to interpret the goals of speakers given evidence gleaned from a natural language parse of their utterances. Beyond linguistic features, the domain models take into consideration contextual evidence, including visual findings. We discuss key principles of conversational actions under uncertainty and the overall architecture of the system, highlighting the use of a hierarchy of Bayesian models at different levels of detail, the use of value of information to control question asking, and application of expected utility to control progression and backtracking in conversation.
Speech Communication | 2008
Tim Paek; Roberto Pieraccini
In designing a spoken dialogue system, developers need to specify the actions a system should take in response to user speech input and the state of the environment based on observed or inferred events, states, and beliefs. This is the fundamental task of dialogue management. Researchers have recently pursued methods for automating the design of spoken dialogue management using machine learning techniques such as reinforcement learning. In this paper, we discuss how dialogue management is handled in industry and critically evaluate to what extent current state-of-the-art machine learning methods can be of practical benefit to application developers who are deploying commercial production systems. In examining the strengths and weaknesses of these methods, we highlight what academic researchers need to know about commercial deployment if they are to influence the way industry designs and practices dialogue management.
intelligent user interfaces | 2010
Asela Gunawardana; Tim Paek; Christopher Meek
Soft keyboards offer touch-capable mobile and tabletop devices many advantages such as multiple language support and room for larger displays. On the other hand, because soft keyboards lack haptic feedback, users often produce more typing errors. In order to make soft keyboards more robust to noisy input, researchers have developed key-target resizing algorithms, where underlying target areas for keys are dynamically resized based on their probabilities. In this paper, we describe how overly aggressive key-target resizing can sometimes prevent users from typing their desired text, violating basic user expectations about keyboard functionality. We propose an anchored key-target method which incorporates usability principles so that soft keyboards can remain robust to errors while respecting usability principles. In an empirical evaluation, we found that using anchored dynamic key-targets significantly reduce keystroke errors as compared to the state-of-the-art.
conference on computer supported cooperative work | 2004
Tim Paek; Maneesh Agrawala; Sumit Basu; Steven M. Drucker; Trausti T. Kristjansson; Ron Logan; Kentaro Toyama; Andrew D. Wilson
Researchers have noted conflicting trends in collaboration technologies between delivering more information on larger displays and exploiting mobility on smaller devices. Large, shared displays provide greater choice in the presentation of information, but mobile devices offer greater flexibility in the access of information. We describe a platform that leverages the best of both worlds by allowing multiple users to access and interact with a large, shared display using their own personal mobile devices, such as a cell phone, laptop, or wireless PDA. We highlight three applications built on top of the platform that demonstrate its generality and utility in a variety of group settings: namely, web browsing, polling, and entertainment.
human computer interaction with mobile devices and services | 2011
Zeljko Medenica; Andrew L. Kun; Tim Paek; Oskar Palinko
Prior research has shown that when drivers look away from the road to view a personal navigation device (PND), driving performance is affected. To keep visual attention on the road, an augmented reality (AR) PND using a heads-up display could overlay a navigation route. In this paper, we compare the AR PND, a technology that does not currently exist but can be simulated, with two PND technologies that are popular today: an egocentric street view PND and the standard map-based PND. Using a high-fidelity driving simulator, we examine the effect of all three PNDs on driving performance in a city traffic environment where constant, alert attention is required. Based on both objective and subjective measures, experimental results show that the AR PND exhibits the least negative impact on driving. We discuss the implications of these findings on PND design as well as methods for potential improvement.
automotive user interfaces and interactive vehicular applications | 2009
Andrew L. Kun; Tim Paek; Željko Medenica; Nemanja Memarovic; Oskar Palinko
Nowadays, personal navigation devices (PNDs) that provide GPS-based directions are widespread in vehicles. These devices typically display the real-time location of the vehicle on a map and play spoken prompts when drivers need to turn. While such devices are less distracting than paper directions, their graphical display may distract users from their primary task of driving. In experiments conducted with a high fidelity driving simulator, we found that drivers using a navigation system with a graphical display indeed spent less time looking at the road compared to those using a navigation system with spoken directions only. Furthermore, glancing at the display was correlated with higher variance in driving performance measures. We discuss the implications of these findings on PND design for vehicles.
User Modeling and User-adapted Interaction | 2007
Tim Paek; David Maxwell Chickering
Command and control (C&C) speech recognition allows users to interact with a system by speaking commands or asking questions restricted to a fixed grammar containing pre-defined phrases. Whereas C&C interaction has been commonplace in telephony and accessibility systems for many years, only recently have mobile devices had the memory and processing capacity to support client-side speech recognition. Given the personal nature of mobile devices, statistical models that can predict commands based in part on past user behavior hold promise for improving C&C recognition accuracy. For example, if a user calls a spouse at the end of every workday, the language model could be adapted to weight the spouse more than other contacts during that time. In this paper, we describe and assess statistical models learned from a large population of users for predicting the next user command of a commercial C&C application. We explain how these models were used for language modeling, and evaluate their performance in terms of task completion. The best performing model achieved a 26% relative reduction in error rate compared to the base system. Finally, we investigate the effects of personalization on performance at different learning rates via online updating of model parameters based on individual user data. Personalization significantly increased relative reduction in error rate by an additional 5%.
international conference on computer graphics and interactive techniques | 2014
Sean Ryan Fanello; Cem Keskin; Shahram Izadi; Pushmeet Kohli; David Kim; David Sweeney; Antonio Criminisi; Jamie Shotton; Sing Bing Kang; Tim Paek
We present a machine learning technique for estimating absolute, per-pixel depth using any conventional monocular 2D camera, with minor hardware modifications. Our approach targets close-range human capture and interaction where dense 3D estimation of hands and faces is desired. We use hybrid classification-regression forests to learn how to map from near infrared intensity images to absolute, metric depth in real-time. We demonstrate a variety of human-computer interaction and capture scenarios. Experiments show an accuracy that outperforms a conventional light fall-off baseline, and is comparable to high-quality consumer depth cameras, but with a dramatically reduced cost, power consumption, and form-factor.
international conference on user modeling, adaptation, and personalization | 2001
Eric Horvitz; Tim Paek
Speaker-independent speech recognition systems are being used with increasing frequency for command and control applications. To date, users of such systems must contend with their fragility to subtle changes in language usage and environmental acoustics. We describe work on coupling speech recognition systems with temporal probabilistic user models that provide inferences about the intentions associated with utterances. The methods can be employed to enhance the robustness of speech recognition by endowing systems with an ability to reason about the costs and benefits of action in a setting and to make decisions about the best action to take given uncertainty about the meaning behind acoustic signals. The methods have been implemented in the form of a dialog clarification module that can be integrated with legacy spoken language systems. We describe representation and inference procedures and present details on the operation of an implemented spoken command and control development environment called DeepListener.