Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Schedl is active.

Publication


Featured researches published by Tim Schedl.


Cell | 2001

CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration

Tina L. Gumienny; Enrico Brugnera; Annie-Carole Tosello-Trampont; Jason M. Kinchen; Lisa B. Haney; Kiyoji Nishiwaki; Scott F. Walk; Michael E. Nemergut; Ian G. Macara; Ross Francis; Tim Schedl; Yi Qin; Linda Van Aelst; Michael O. Hengartner; Kodimangalam S. Ravichandran

The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for engulfment of dying cells and for cell migrations. In mammalian cells, ELMO1 functionally cooperates with CrkII and Dock180 to promote phagocytosis and cell shape changes. CED-12/ELMO-1 binds directly to CED-5/Dock180; this evolutionarily conserved complex stimulates a Rac-GEF, leading to Rac1 activation and cytoskeletal rearrangements. These studies identify CED-12/ELMO as an upstream regulator of Rac1 that affects engulfment and cell migration from C. elegans to mammals.


Nature Methods | 2008

Whole-genome sequencing and variant discovery in C. elegans

LaDeana W. Hillier; Gabor T. Marth; Aaron R. Quinlan; David J. Dooling; Ginger Fewell; Derek Barnett; Paul Fox; Jarret Glasscock; Matthew Hickenbotham; Weichun Huang; Vincent Magrini; Ryan Richt; Sacha Sander; Donald A Stewart; Michael Stromberg; Eric F. Tsung; Todd Wylie; Tim Schedl; Richard Wilson; Elaine R. Mardis

Massively parallel sequencing instruments enable rapid and inexpensive DNA sequence data production. Because these instruments are new, their data require characterization with respect to accuracy and utility. To address this, we sequenced a Caernohabditis elegans N2 Bristol strain isolate using the Solexa Sequence Analyzer, and compared the reads to the reference genome to characterize the data and to evaluate coverage and representation. Massively parallel sequencing facilitates strain-to-reference comparison for genome-wide sequence variant discovery. Owing to the short-read-length sequences produced, we developed a revised approach to determine the regions of the genome to which short reads could be uniquely mapped. We then aligned Solexa reads from C. elegans strain CB4858 to the reference, and screened for single-nucleotide polymorphisms (SNPs) and small indels. This study demonstrates the utility of massively parallel short read sequencing for whole genome resequencing and for accurate discovery of genome-wide polymorphisms.


PLOS ONE | 2012

High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal Growth Retardation/Brain Defects

Kerri M. Luzzo; Qiang Wang; Scott H. Purcell; Maggie M.-Y. Chi; Patricia T. Jimenez; Natalia M. Grindler; Tim Schedl; Kelle H. Moley

Background Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment. Methodology/Principal Findings We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage. Conclusions/Significance Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes.


Development | 2004

Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation.

Dave Hansen; Laura Wilson-Berry; Thanh Dang; Tim Schedl

Maintenance of the stem cell population in the C. elegans germline requires GLP-1/Notch signaling. We show that this signaling inhibits the accumulation of the RNA binding protein GLD-1. In a genetic screen to identify other genes involved in regulating GLD-1 activity, we identified mutations in the nos-3 gene, the protein product of which is similar to the Drosophila translational regulator Nanos. Our data demonstrate that nos-3 promotes GLD-1 accumulation redundantly with gld-2, and that nos-3 functions genetically downstream or parallel to fbf, an inhibitor of GLD-1 translation. We show that the GLD-1 accumulation pattern is important in controlling the proliferation versus meiotic development decision, with low GLD-1 levels allowing proliferation and increased levels promoting meiotic entry.


Nucleic Acids Research | 2014

WormBase 2014: new views of curated biology

Todd W. Harris; Joachim Baran; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; James Done; Christian A. Grove; Kevin L. Howe; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Michael Paulini; Daniela Raciti; Gary Schindelman; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Jennifer Wong; Karen Yook; Tim Schedl; Jonathan Hodgkin; Matthew Berriman; Paul J. Kersey

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Cell | 2011

A High-Resolution C. elegans Essential Gene Network Based on Phenotypic Profiling of a Complex Tissue

Rebecca A. Green; Huey Ling Kao; Anjon Audhya; Swathi Arur; Jonathan R. Mayers; Heidi N. Fridolfsson; Monty Schulman; Siegfried Schloissnig; Sherry Niessen; Kimberley Laband; Shaohe Wang; Daniel A. Starr; Anthony A. Hyman; Tim Schedl; Arshad Desai; Fabio Piano; Kristin C. Gunsalus; Karen Oegema

High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.


Nucleic Acids Research | 2016

WormBase 2016: expanding to enable helminth genomic research

Kevin L. Howe; Bruce J. Bolt; Scott Cain; Juancarlos Chan; Wen J. Chen; Paul Davis; James Done; Thomas A. Down; Sibyl Gao; Christian A. Grove; Todd W. Harris; Ranjana Kishore; Raymond Y. N. Lee; Jane Lomax; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Paulo A. S. Nuin; Michael Paulini; Daniela Raciti; Gary Schindelman; Eleanor Stanley; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Adam Wright; Karen Yook; Matthew Berriman

WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research.


Current Biology | 2002

C. elegans ksr-1 and ksr-2 Have Both Unique and Redundant Functions and Are Required for MPK-1 ERK Phosphorylation

Mitsue Ohmachi; Christian E. Rocheleau; Diane L. Church; Eric J. Lambie; Tim Schedl; Meera V. Sundaram

Kinase Suppressor of Ras (KSR) is a conserved protein that positively regulates Ras signaling and may function as a scaffold for Raf, MEK, and ERK. However, the precise role of KSR is not well understood, and some observations have suggested that KSR might act in a parallel pathway. In C. elegans, ksr-1 is only required for a specific Ras-mediated process (sex myoblast migration) and is a nonessential positive regulator of other Ras-mediated developmental events. We report the existence of a second C. elegans ksr gene, ksr-2, which is required for Ras-mediated signaling during germline meiotic progression and functions redundantly with ksr-1 during development of the excretory system, hermaphrodite vulva, and male spicules. Thus, while the ksr-1 and ksr-2 genes are individually required only for specific Ras-dependent processes, together these two genes appear necessary for most aspects of Ras-mediated signaling in C. elegans. The finding that ksr-2; ksr-1 double mutants have strong ras-like phenotypes and severely reduced or absent levels of diphosphorylated MPK-1 ERK strongly supports models where KSR acts to promote the activation or maintenance of the Raf/MEK/ERK kinase cascade.


PLOS Biology | 2004

fog-2 and the Evolution of Self-Fertile Hermaphroditism in Caenorhabditis

Sudhir Nayak; Johnathan Goree; Tim Schedl

Somatic and germline sex determination pathways have diverged significantly in animals, making comparisons between taxa difficult. To overcome this difficulty, we compared the genes in the germline sex determination pathways of Caenorhabditis elegans and C. briggsae, two Caenorhabditis species with similar reproductive systems and sequenced genomes. We demonstrate that C. briggsae has orthologs of all known C. elegans sex determination genes with one exception: fog-2. Hermaphroditic nematodes are essentially females that produce sperm early in life, which they use for self fertilization. In C. elegans, this brief period of spermatogenesis requires FOG-2 and the RNA-binding protein GLD-1, which together repress translation of the tra-2 mRNA. FOG-2 is part of a large C. elegans FOG-2-related protein family defined by the presence of an F-box and Duf38/FOG-2 homogy domain. A fog-2-related gene family is also present in C. briggsae, however, the branch containing fog-2 appears to have arisen relatively recently in C. elegans, post-speciation. The C-terminus of FOG-2 is rapidly evolving, is required for GLD-1 interaction, and is likely critical for the role of FOG-2 in sex determination. In addition, C. briggsae gld-1 appears to play the opposite role in sex determination (promoting the female fate) while maintaining conserved roles in meiotic progression during oogenesis. Our data indicate that the regulation of the hermaphrodite germline sex determination pathway at the level of FOG-2/GLD-1/tra-2 mRNA is fundamentally different between C. elegans and C. briggsae, providing functional evidence in support of the independent evolution of self-fertile hermaphroditism. We speculate on the convergent evolution of hermaphroditism in Caenorhabditis based on the plasticity of the C. elegans germline sex determination cascade, in which multiple mutant paths yield self fertility.


Current Biology | 2002

The Caenorhabditis elegans Skp1-Related Gene Family: Diverse Functions in Cell Proliferation, Morphogenesis, and Meiosis

Sudhir Nayak; Fernando E. Santiago; Hui Jin; Debbie Lin; Tim Schedl; Edward T. Kipreos

BACKGROUND The SCF ubiquitin-ligase complex targets the ubiquitin-mediated degradation of proteins in multiple dynamic cellular processes. A key SCF component is the Skp1 protein that functions within the complex to link the substrate-recognition subunit to a cullin that in turn binds the ubiquitin-conjugating enzyme. In contrast to yeast and humans, Caenorhabditis elegans contains multiple expressed Skp1-related (skr) genes. RESULTS The 21 Skp1-related (skr) genes in C. elegans form one phylogenetic clade, suggesting that a single ancestral Skp1 gene underwent independent expansion in C. elegans. The cellular and developmental functions of the 21 C. elegans skr genes were probed by dsRNA-mediated gene inactivation (RNAi). The RNAi phenotypes of the skr genes fall into two classes. First, the highly similar skr-7, -8, -9, and -10 genes are required for posterior body morphogenesis, embryonic and larval development, and cell proliferation. Second, the related skr-1 and -2 genes are required for the restraint of cell proliferation, progression through the pachytene stage of meiosis, and the formation of bivalent chromosomes at diakinesis. CUL-1 was found to interact with SKR-1, -2, -3, -7, -8, and -10 in the yeast two-hybrid system. Interestingly, SKR-3 could interact with both CUL-1 and its close paralog CUL-6. CONCLUSIONS Members of the expanded skr gene family in C. elegans perform critical functions in regulating cell proliferation, meiosis, and morphogenesis. The finding that multiple SKRs are able to bind cullins suggests an extensive set of combinatorial SCF complexes.

Collaboration


Dive into the Tim Schedl's collaboration.

Top Co-Authors

Avatar

Kelle H. Moley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Qiang Wang

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar

Sudhir Nayak

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Karen Yook

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Maggie M.-Y. Chi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ross Francis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

William F. Dove

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Timothy G. Burland

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge