Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Wiltshire is active.

Publication


Featured researches published by Tim Wiltshire.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Large-scale analysis of the human and mouse transcriptomes

Andrew I. Su; Michael P. Cooke; Keith A. Ching; Yaron Hakak; John R. Walker; Tim Wiltshire; Anthony P. Orth; Raquel G. Vega; Lisa M. Sapinoso; Aziz Moqrich; Ardem Patapoutian; Garret M. Hampton; Peter G. Schultz; John B. Hogenesch

High-throughput gene expression profiling has become an important tool for investigating transcriptional activity in a variety of biological samples. To date, the vast majority of these experiments have focused on specific biological processes and perturbations. Here, we have generated and analyzed gene expression from a set of samples spanning a broad range of biological conditions. Specifically, we profiled gene expression from 91 human and mouse samples across a diverse array of tissues, organs, and cell lines. Because these samples predominantly come from the normal physiological state in the human and mouse, this dataset represents a preliminary, but substantial, description of the normal mammalian transcriptome. We have used this dataset to illustrate methods of mining these data, and to reveal insights into molecular and physiological gene function, mechanisms of transcriptional regulation, disease etiology, and comparative genomics. Finally, to allow the scientific community to use this resource, we have built a free and publicly accessible website (http://expression.gnf.org) that integrates data visualization and curation of current gene annotations.


Nature Genetics | 2005

Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'.

Leonid Bystrykh; Bert Dontje; Sue Sutton; Mathew T. Pletcher; Tim Wiltshire; Andrew I. Su; Edo Vellenga; Jintao Wang; Kenneth F. Manly; Lu Lu; Elissa J. Chesler; Rudi Alberts; Ritsert C. Jansen; Robert W. Williams; Michael P. Cooke; Gerald de Haan

We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.


Immunome Research | 2008

Expression analysis of G Protein-Coupled Receptors in mouse macrophages

Jane Lattin; Kate Schroder; Andrew I. Su; John R. Walker; Jie Zhang; Tim Wiltshire; Kaoru Saijo; Christopher K. Glass; David A. Hume; Stuart Kellie; Matthew J. Sweet

BackgroundMonocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS).ResultsSeveral members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population.ConclusionThe constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse

Tim Wiltshire; Mathew T. Pletcher; Serge Batalov; S. Whitney Barnes; Lisa M. Tarantino; Michael P. Cooke; Hua Wu; Kevin J. Smylie; Andrey Santrosyan; Neal G. Copeland; Nancy A. Jenkins; Francis Kalush; Richard J. Mural; Richard Glynne; Steve A. Kay; Mark D. Adams; Colin F. Fletcher

The nature and organization of polymorphisms, or differences, between genomes of individuals are of great interest, because these variations can be associated with or even underlie phenotypic traits, including disease susceptibility. To gain insight into the genetic and evolutionary factors influencing such biological variation, we have examined the arrangement (haplotype) of single-nucleotide polymorphisms across the genomes of eight inbred strains of mice. These analyses define blocks of high or low diversity, often extending across tens of megabases that are delineated by abrupt transitions. These observations provide a striking contrast to the haplotype structure of the human genome.


PLOS Biology | 2004

Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse.

Mathew T. Pletcher; Philip McClurg; Serge Batalov; Andrew I. Su; S. Whitney Barnes; Erica Lagler; Ron Korstanje; Xiaosong Wang; Deborah Nusskern; Molly A. Bogue; Richard J. Mural; Beverly Paigen; Tim Wiltshire

Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.


PLOS Genetics | 2008

Genetical genomics: Spotlight on QTL hotspots

Rainer Breitling; Yang Li; Bruno M. Tesson; Jingyuan Fu; Chunlei Wu; Tim Wiltshire; Alice Gerrits; Leonid Bystrykh; Gerald de Haan; Andrew I. Su; Ritsert C. Jansen

Genetical genomics aims at identifying quantitative trait loci (QTLs) for molecular traits such as gene expression or protein levels (eQTL and pQTL, respectively). One of the central concepts in genetical genomics is the existence of hotspots [1], where a single polymorphism leads to widespread downstream changes in the expression of distant genes, which are all mapping to the same genomic locus. Several groups have hypothesized that many genetic polymorphisms—e.g., in major regulators or transcription factors—would lead to large and consistent biological effects that would be visible as eQTL hotspots.


The Journal of Neuroscience | 2007

A Forward Genetics Screen in Mice Identifies Recessive Deafness Traits and Reveals That Pejvakin Is Essential for Outer Hair Cell Function

Martin Schwander; Anna Sczaniecka; Nicolas Grillet; Janice S. Bailey; Matthew R. Avenarius; Hossein Najmabadi; Brian M. Steffy; Glenn C. Federe; Erica A. Lagler; Raheleh Banan; Rudy Hice; Laura Grabowski-Boase; Elisabeth M. Keithley; Allen F. Ryan; Gary D. Housley; Tim Wiltshire; Richard J.H. Smith; Lisa M. Tarantino; Ulrich Müller

Deafness is the most common form of sensory impairment in the human population and is frequently caused by recessive mutations. To obtain animal models for recessive forms of deafness and to identify genes that control the development and function of the auditory sense organs, we performed a forward genetics screen in mice. We identified 13 mouse lines with defects in auditory function and six lines with auditory and vestibular defects. We mapped several of the affected genetic loci and identified point mutations in four genes. Interestingly, all identified genes are expressed in mechanosensory hair cells and required for their function. One mutation maps to the pejvakin gene, which encodes a new member of the gasdermin protein family. Previous studies have described two missense mutations in the human pejvakin gene that cause nonsyndromic recessive deafness (DFNB59) by affecting the function of auditory neurons. In contrast, the pejvakin allele described here introduces a premature stop codon, causes outer hair cell defects, and leads to progressive hearing loss. We also identified a novel allele of the human pejvakin gene in an Iranian pedigree that is afflicted with progressive hearing loss. Our findings suggest that the mechanisms of pathogenesis associated with pejvakin mutations are more diverse than previously appreciated. More generally, our findings demonstrate that recessive screens in mice are powerful tools for identifying genes that control the development and function of mechanosensory hair cells and cause deafness in humans, as well as generating animal models for disease.


PLOS Genetics | 2008

Gene Set Enrichment in eQTL Data Identifies Novel Annotations and Pathway Regulators

Chunlei Wu; David L. Delano; Nico Mitro; Stephen V. Su; Jeff Janes; Phillip McClurg; Serge Batalov; Genevieve Welch; Jie Zhang; Anthony P. Orth; John R. Walker; Richard Glynne; Michael P. Cooke; Joseph S. Takahashi; Kazuhiro Shimomura; Akira Kohsaka; Joseph Bass; Enrique Saez; Tim Wiltshire; Andrew I. Su

Genome-wide gene expression profiling has been extensively used to generate biological hypotheses based on differential expression. Recently, many studies have used microarrays to measure gene expression levels across genetic mapping populations. These gene expression phenotypes have been used for genome-wide association analyses, an analysis referred to as expression QTL (eQTL) mapping. Here, eQTL analysis was performed in adipose tissue from 28 inbred strains of mice. We focused our analysis on “trans-eQTL bands”, defined as instances in which the expression patterns of many genes were all associated to a common genetic locus. Genes comprising trans-eQTL bands were screened for enrichments in functional gene sets representing known biological pathways, and genes located at associated trans-eQTL band loci were considered candidate transcriptional modulators. We demonstrate that these patterns were enriched for previously characterized relationships between known upstream transcriptional regulators and their downstream target genes. Moreover, we used this strategy to identify both novel regulators and novel members of known pathways. Finally, based on a putative regulatory relationship identified in our analysis, we identified and validated a previously uncharacterized role for cyclin H in the regulation of oxidative phosphorylation. We believe that the specific molecular hypotheses generated in this study will reveal many additional pathway members and regulators, and that the analysis approaches described herein will be broadly applicable to other eQTL data sets.


PLOS ONE | 2009

A Common and Unstable Copy Number Variant Is Associated with Differences in Glo1 Expression and Anxiety-Like Behavior

Richard Williams; Jackie E. Lim; Bettina Harr; Claudia Wing; Ryan Walters; Margaret G. Distler; Meike Teschke; Chunlei Wu; Tim Wiltshire; Andrew I. Su; Greta Sokoloff; Lisa M. Tarantino; Justin O. Borevitz; Abraham A. Palmer

Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a ∼475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.


Genetics | 2007

Genomewide association analysis in diverse inbred mice: Power and population structure

Phillip McClurg; Jeff Janes; Chunlei Wu; David L. Delano; John R. Walker; Serge Batalov; Joseph S. Takahashi; Kazuhiro Shimomura; Akira Kohsaka; Joseph Bass; Tim Wiltshire; Andrew I. Su

The discovery of quantitative trait loci (QTL) in model organisms has relied heavily on the ability to perform controlled breeding to generate genotypic and phenotypic diversity. Recently, we and others have demonstrated the use of an existing set of diverse inbred mice (referred to here as the mouse diversity panel, MDP) as a QTL mapping population. The use of the MDP population has many advantages relative to traditional F2 mapping populations, including increased phenotypic diversity, a higher recombination frequency, and the ability to collect genotype and phenotype data in community databases. However, these methods are complicated by population structure inherent in the MDP and the lack of an analytical framework to assess statistical power. To address these issues, we measured gene expression levels in hypothalamus across the MDP. We then mapped these phenotypes as quantitative traits with our association algorithm, resulting in a large set of expression QTL (eQTL). We utilized these eQTL, and specifically cis-eQTL, to develop a novel nonparametric method for association analysis in structured populations like the MDP. These eQTL data confirmed that the MDP is a suitable mapping population for QTL discovery and that eQTL results can serve as a gold standard for relative measures of statistical power.

Collaboration


Dive into the Tim Wiltshire's collaboration.

Top Co-Authors

Avatar

Michael P. Cooke

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Andrew I. Su

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lisa M. Tarantino

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Oscar Suzuki

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Serge Batalov

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Steven R. Kleeberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Walker

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amber Frick

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge