Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Wood is active.

Publication


Featured researches published by Tim Wood.


Human Genetics | 2006

X-linked creatine transporter (SLC6A8) mutations in about 1% of males with mental retardation of unknown etiology.

Amy J. Clark; Efraim H. Rosenberg; Lígia S. Almeida; Tim Wood; Cornelis Jakobs; Roger E. Stevenson; Charles E. Schwartz; Gajja S. Salomons

Mutations in the creatine transporter gene, SLC6A8 (MIM 30036), located in Xq28, have been found in families with X-linked mental retardation (XLMR) as well as in males with idiopathic mental retardation (MR). In order to estimate the frequency of such mutations in the MR population, a screening of 478 males with MR of unknown cause was undertaken. All 13 exons of SLC6A8 were sequenced using genomic DNA. Six novel potentially pathogenic mutations were identified that were not encountered in at least 588 male control chromosomes: two deletions (p.Asn336del, p.Ile347del) and a splice site alteration (c.1016+2C>T) are considered pathogenic based on the nature of the variant. A mutation (p.Arg391Trp) should be considered pathogenic owing to its localization in a highly conserved region. Two other missense variants (p.Lys4Arg, p.Gly26Arg) are not conserved but were not observed in over 300 male control chromosomes. Their pathogenicity is uncertain. A missense variant (p.Val182Met), was classified as a polymorphism based on a normal creatine/creatinine (Cr:Crn) ratio and cerebral creatine signal in proton magnetic resonance spectroscopy (H-MRS) in the patient. Furthermore, we found 14 novel intronic and neutral variants that were not encountered in at least 280 male control chromosomes and should be considered as unclassified variants. Our findings of a minimum of four pathogenic mutations and two potentially pathogenic mutations indicate that about 1% of males with MR of unknown etiology might have a SLC6A8 mutation. Thus, DNA sequence analysis and/or a Cr:Crn urine screen is warranted in any male with MR of unknown cause.


European Journal of Human Genetics | 2003

X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome

A. Lauren Cason; Yoshihiko Ikeguchi; Cindy Skinner; Tim Wood; Kenton R. Holden; Herbert A. Lubs; Francisco Venegas Martínez; Richard J. Simensen; Roger E. Stevenson; Anthony E. Pegg; Charles E. Schwartz

Polyamines (putrescine, spermidine, spermine) are ubiquitous, simple molecules that interact with a variety of other molecules in the cell, including nucleic acids, phospholipids and proteins. Various studies indicate that polyamines are essential for normal cell growth and differentiation. Furthermore, these molecules, especially spermine, have been shown to modulate ion channel activities of certain cells. Nonetheless, little is known about the specific cellular functions of these compounds, and extensive laboratory investigations have failed to identify a heritable condition in humans in which polyamine synthesis is perturbed. We report the first polyamine deficiency syndrome caused by a defect in spermine synthase (SMS). The defect results from a splice mutation, and is associated with the Snyder–Robinson syndrome (SRS, OMIM_309583), an X-linked mental retardation disorder. The affected males have mild-to-moderate mental retardation (MR), hypotonia, cerebellar circuitry dysfunction, facial asymmetry, thin habitus, osteoporosis, kyphoscoliosis, decreased activity of SMS, correspondingly low levels of intracellular spermine in lymphocytes and fibroblasts, and elevated spermidine/spermine ratios. The clinical features observed in SRS are consistent with cerebellar dysfunction and a defective functioning of red nucleus neurons, which, at least in rats, contain high levels of spermine. Additionally, the presence of MR reflects a role for spermine in cognitive function, possibly by spermines ability to function as an ‘intrinsic gateway’ molecule for inward rectifier K+ channels.


Journal of Medical Genetics | 2010

Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands

Sara S. Cathey; Jules G. Leroy; Tim Wood; Karisa Eaves; Richard J. Simensen; Mariko Kudo; Roger E. Stevenson; Michael J. Friez

Background Mucolipidoses II and III alpha/beta (ML II and ML III) are lysosomal disorders in which the essential mannose 6-phosphate recognition marker is not synthesised on to lysosomal hydrolases and other glycoproteins. The disorders are caused by mutations in GNPTAB, which encodes two of three subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase. Objectives Clinical, biochemical and molecular findings in 61 probands (63 patients) are presented to provide a broad perspective of these mucolipidoses. Methods GNPTAB was sequenced in all probands and/or parents. The activity of several lysosomal enzymes was measured in plasma, and GlcNAc-1-phosphotransferase was assayed in leucocytes. Thirty-six patients were studied in detail, allowing extensive clinical data to be abstracted. Results ML II correlates with near-total absence of phosphotransferase activity resulting from homozygosity or compound heterozygosity for frameshift or nonsense mutations. Craniofacial and orthopaedic manifestations are evident at birth, skeletal findings become more obvious within the first year, and growth is severely impaired. Speech, ambulation and cognitive function are impaired. ML III retains a low level of phosphotransferase activity because of at least one missense or splice site mutation. The phenotype is milder, with minimal delays in milestones, the appearance of facial coarsening by early school age, and slowing of growth after the age of 4 years. Conclusions Fifty-one pathogenic changes in GNPTAB are presented, including 42 novel mutations. Ample clinical information improves criteria for delineation of ML II and ML III. Phenotype–genotype correlations suggested in more general terms in earlier reports on smaller groups of patients are specified and extended.


Journal of Inherited Metabolic Disease | 2013

Diagnosing mucopolysaccharidosis IVA

Tim Wood; Katie Harvey; Michael Beck; Maira Graeff Burin; Yin-Hsiu Chien; Heather J. Church; Vânia D’Almeida; Otto P. van Diggelen; Michael Fietz; Roberto Giugliani; Paul Harmatz; Sara M. Hawley; Wuh-Liang Hwu; David Ketteridge; Zoltan Lukacs; Nicole Miller; Marzia Pasquali; Andrea Schenone; Jerry N. Thompson; Karen Tylee; Chunli Yu; Christian J. Hendriksz

Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process.


Molecular Genetics and Metabolism | 2015

A straightforward, quantitative ultra-performance liquid chromatography‐tandem mass spectrometric method for heparan sulfate, dermatan sulfate and chondroitin sulfate in urine: An improved clinical screening test for the mucopolysaccharidoses

Haoyue Zhang; Tim Wood; Sarah P. Young; David S. Millington

Mucopolysaccharidoses (MPS) are complex storage disorders that result in the accumulation of glycosaminoglycans (GAGs) in urine, blood, brain and other tissues. Symptomatic patients are typically screened for MPS by analysis of GAG in urine. Current screening methods used in clinical laboratories are based on colorimetric assays that lack the sensitivity and specificity to reliably detect mild GAG elevations that occur in some patients with MPS. We have developed a straightforward, reliable method to quantify chondroitin sulfate (CS), dermatan sulfate (DS) and heparan sulfate (HS) in urine by stable isotope dilution tandem mass spectrometry. The GAGs were methanolyzed to uronic acid-N-acetylhexosamine or iduronic acid-N-glucosamine dimers and mixed with stable isotope labeled internal standards derived from deuteriomethanolysis of GAG standards. Specific dimers derived from HS, DS and CS were separated by ultra-performance liquid chromatography and analyzed by electrospray ionization tandem mass spectrometry using selected reaction monitoring for each targeted GAG product and its corresponding internal standard. The method was robust with a mean inaccuracy from 1 to 15%, imprecision below 11%, and a lower limit of quantification of 0.4mg/L for CS, DS and HS. We demonstrate that the method has the required sensitivity and specificity to discriminate patients with MPS III, MPS IVA and MPS VI from those with MPS I or MPS II and can detect mildly elevated GAG species relative to age-specific reference intervals. This assay may also be used for the monitoring of patients following therapeutic intervention. Patients with MPS IVB are, however, not detectable by this method.


Molecular Genetics and Metabolism | 2012

Expert recommendations for the laboratory diagnosis of MPS VI.

Tim Wood; Olaf A. Bodamer; Maira Graeff Burin; Vânia D'Almeida; Michael Fietz; Roberto Giugliani; Sara M. Hawley; C. Hendriksz; Wuh-Liang Hwu; David Ketteridge; Zoltan Lukacs; Nancy J. Mendelsohn; Nicole Miller; Marzia Pasquali; Andrea Schenone; Kees Schoonderwoerd; Bryan Winchester; Paul Harmatz

Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease caused by a deficiency of N-acetylgalactosamine 4-sulfatase (arylsulfatase B, ASB). This enzyme is required for the degradation of dermatan sulfate. In its absence, dermatan sulfate accumulates in cells and is excreted in large quantities in urine. Specific therapeutic intervention is available; however, accurate and timely diagnosis is crucial for maximal benefit. To better understand the current practices for diagnosis and to establish diagnostic guidelines, an international MPS VI laboratory diagnostics scientific summit was held in February of 2011 in Miami, Florida. The various steps in the diagnosis of MPS VI were discussed including urinary glycosaminoglycan (uGAG) analysis, enzyme activity analysis, and molecular analysis. The following conclusions were reached. Dilute urine samples pose a significant problem for uGAG analysis and MPS VI patients can be missed by quantitative uGAG testing alone as dermatan sulfate may not always be excreted in large quantities. Enzyme activity analysis is universally acknowledged as a key component of diagnosis; however, several caveats must be considered and the appropriate use of reference enzymes is essential. Molecular analysis supports enzyme activity test results and is essential for carrier testing, subsequent genetic counseling, and prenatal testing. Overall the expert panel recommends caution in the use of uGAG screening alone to rule out or confirm the diagnosis of MPS VI and acknowledges enzyme activity analysis as a critical component of diagnosis. Measurement of another sulfatase enzyme to exclude multiple sulfatase deficiency was recommended prior to the initiation of therapy. When feasible, the use of molecular testing as part of the diagnosis is encouraged. A diagnostic algorithm for MPS VI is provided.


Molecular Genetics and Metabolism | 2010

Identification and characterization of a novel homozygous deletion in the α-N-acetylglucosaminidase gene in a patient with Sanfilippo type B syndrome (mucopolysaccharidosis IIIB)

Kristen J. Champion; Monica J. Basehore; Tim Wood; A Destree; Pascal Vannuffel; Isabelle Maystadt

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is an autosomal recessive disease that is caused by a deficiency of the lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Over 100 different mutations in the NAGLU gene have been identified in Sanfilippo syndrome type B patients; however, no large deletions have been reported. Here we present the first case of a large homozygous intragenic NAGLU gene deletion identified in an affected child of consanguineous parents. Long range and multiplex PCR methods were used to characterize this deletion which encompasses exons 3 and 4 and is 1146 base pairs long. We propose that Alu element-mediated unequal homologous recombination between an Alu-Y in intron 2 and an Alu-Sx in intron 4 is the likely mechanism for this deletion, thereby contributing further insight into the molecular etiology of this disorder and providing additional evidence of its allelic heterogeneity.


Genetics in Medicine | 2002

Diversity of mutations and distribution of single nucleotide polymorphic alleles in the human α-l-iduronidase ( IDUA ) gene

Peining Li; Tim Wood; Jerry N. Thompson

Purpose: Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disorder resulting from a deficiency of the lysosomal glycosidase, α-l-iduronidase (IDUA). Patients with MPS I present with variable clinical manifestations ranging from severe to mild. To facilitate studies of phenotype-genotype correlation, the authors performed molecular studies to detect mutations in MPS I patients and characterize single nucleotide polymorphism (SNP) in the IDUA gene.Methods: Twenty-two unrelated MPS I patients were subjects for mutation detection using reverse transcriptional polymerase chain reaction (RT-PCR) and genomic PCR sequencing. Polymorphism analyses were performed on controls by restriction enzyme assays of PCR amplicons flanking nine IDUA intragenic single nucleotide polymorphic alleles.Results: Eleven different mutations including two common mutations (Q70X, W402X), five recurrent mutations (D315Y, P533R, R621X, R628X, S633L), and four novel mutations (R162I, G208D, 1352delG, 1952del25bp) were identified from MPS I patients. Multiple SNP alleles coexisting with the disease-causing mutations were detected. Allelic frequencies for nine SNP alleles including A8, A20, Q33H, L118, N181, A314, A361T, T388, and T410 were determined.Conclusions: The results provide further evidence for the mutational heterogeneity among MPS I patients and point out possible common haplotype structures in the IDUA gene.


Human Molecular Genetics | 2013

A Y328C missense mutation in spermine synthase causes a mild form of Snyder–Robinson syndrome

Zhe Zhang; Joy Norris; Vera M. Kalscheuer; Tim Wood; Lin Wang; Charles E. Schwartz; Emil Alexov; Hilde Van Esch

Snyder-Robinson syndrome (SRS, OMIM: 309583) is an X-linked intellectual disability (XLID) syndrome, characterized by a collection of clinical features including facial asymmetry, marfanoid habitus, hypertonia, osteoporosis and unsteady gait. It is caused by a significant decrease or loss of spermine synthase (SMS) activity. Here, we report a new missense mutation, p.Y328C (c.1084A>G), in SMS in a family with XLID. The affected males available for evaluation had mild ID, speech and global delay, an asthenic build, short stature with long fingers and mild kyphosis. The spermine/spermidine ratio in lymphoblasts was 0.53, significantly reduced compared with normal (1.87 average). Activity analysis of SMS in the index patient failed to detect any activity above background. In silico modeling demonstrated that the Y328C mutation has a significant effect on SMS stability, resulting in decreased folding free energy and larger structural fluctuations compared with those of wild-type SMS. The loss of activity was attributed to the increase in conformational dynamics in the mutant which affects the active site geometry, rather than preventing dimer formation. Taken together, the biochemical and in silico studies confirm the p.Y328C mutation in SMS is responsible for the patients having a mild form of SRS and reveal yet another molecular mechanism resulting in a non-functional SMS causing SRS.


Analytica Chimica Acta | 2011

Towards a selected reaction monitoring mass spectrometry fingerprint approach for the screening of oligosaccharidoses

John Sowell; Tim Wood

The oligosaccharidoses are a group of metabolic disorders resulting from a deficiency in enzymes responsible for the catabolism of protein bound oligosaccharides and are typified by the accumulation of corresponding sugars in the urine. Screening is typically accomplished using thin layer chromatography. However, analyte specificity can be a problem and thus complicate interpretation of results. For this reason we developed a mixed mode liquid chromatography tandem mass spectrometry assay for the screening of the oligosaccharidoses which potentially mitigates many of the problems associated with thin layer chromatography. Samples from patients previously diagnosed with I-Cell disease, mannosidosis, Pompe, galactosialidosis, and fucosidosis were derivatized with 3-methyl-1-phenyl-2-pyrazolin-5-one and subjected to analysis by liquid chromatography tandem mass spectrometry. Results were compared to normal control samples. Preliminary results suggest that each oligosaccharidoses produces a unique selected reaction monitoring fingerprint and that the developed method may be an effective screening and diagnostic tool for these disorders.

Collaboration


Dive into the Tim Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenton R. Holden

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jules G. Leroy

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Roger E. Stevenson

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Roberto Giugliani

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Harmatz

Children's Hospital Oakland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy Norris

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge