Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim Woollings is active.

Publication


Featured researches published by Tim Woollings.


Journal of the Atmospheric Sciences | 2008

A New Rossby Wave–Breaking Interpretation of the North Atlantic Oscillation

Tim Woollings; Brian J. Hoskins; Michael Blackburn; Paul Berrisford

This paper proposes the hypothesis that the low-frequency variability of the North Atlantic Oscillation (NAO) arises as a result of variations in the occurrence of upper-level Rossby wave–breaking events over the North Atlantic. These events lead to synoptic situations similar to midlatitude blocking that are referred to as high-latitude blocking episodes. A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently. A similar, but weaker, relationship exists between wave breaking over the Pacific and the west Pacific pattern. Evidence is given to support this hypothesis by using a two-dimensional potential-vorticity-based index to identify wave breaking at various latitudes. This is applied to Northern Hemisphere winter data from the 40-yr ECMWF Re-Analysis (ERA-40), and the events identified are then related to the NAO. Certain dynamical precursors are identified that appear to increase the likelihood of wave breaking. These suggest mechanisms by which variability in the tropical Pacific, and in the stratosphere, could affect the NAO.


Journal of Climate | 2010

Atmospheric Blocking and Mean Biases in Climate Models

Adam A. Scaife; Tim Woollings; Jeff R. Knight; Gill Martin; Tim Hinton

Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


Environmental Research Letters | 2010

Are cold winters in Europe associated with low solar activity

Mike Lockwood; R. G. Harrison; Tim Woollings; S. K. Solanki

Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century. The Maunder minimum (about 1650–1700) was a prolonged episode of low solar activity which coincided with more severe winters in the United Kingdom and continental Europe. Motivated by recent relatively cold winters in the UK, we investigate the possible connection with solar activity. We identify regionally anomalous cold winters by detrending the Central England temperature (CET) record using reconstructions of the northern hemisphere mean temperature. We show that cold winter excursions from the hemispheric trend occur more commonly in the UK during low solar activity, consistent with the solar influence on the occurrence of persistent blocking events in the eastern Atlantic. We stress that this is a regional and seasonal effect relating to European winters and not a global effect. Average solar activity has declined rapidly since 1985 and cosmogenic isotopes suggest an 8% chance of a return to Maunder minimum conditions within the next 50 years (Lockwood 2010 Proc. R. Soc. A 466 303–29): the results presented here indicate that, despite hemispheric warming, the UK and Europe could experience more cold winters than during recent decades.


Journal of Climate | 2013

Winter and Summer Northern Hemisphere Blocking in CMIP5 Models

Giacomo Masato; Brian J. Hoskins; Tim Woollings

AbstractThe frequencies of atmospheric blocking in both winter and summer and the changes in them from the twentieth to the twenty-first centuries as simulated in 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. The representative concentration pathway 8.5 (RCP8.5) high emission scenario runs are used to represent the twenty-first century. The analysis is based on the wave-breaking methodology of Pelly and Hoskins. It differs from the Tibaldi and Molteni index in viewing equatorward cutoff lows and poleward blocking highs in equal manner as indicating a disruption to the westerlies. One-dimensional and two-dimensional diagnostics are applied to identify blocking of the midlatitude storm track and also at higher latitudes. Winter blocking frequency is found to be generally underestimated. The models give a decrease in the European blocking maximum in the twenty-first century, consistent with the results in other studies. There is a mean twenty-first-century winter p...


Geophysical Research Letters | 2014

Exploring recent trends in Northern Hemisphere blocking

Elizabeth A. Barnes; Etienne Dunn-Sigouin; Giacomo Masato; Tim Woollings

Observed blocking trends are diagnosed to test the hypothesis that recent Arctic warming and sea ice loss has increased the likelihood of blocking over the Northern Hemisphere. To ensure robust results, we diagnose blocking using three unique blocking identification methods from the literature, each applied to four different reanalyses. No clear hemispheric increase in blocking is found for any blocking index, and while seasonal increases and decreases are found for specific isolated regions and time periods, there is no instance where all three methods agree on a robust trend. Blocking is shown to exhibit large interannual and decadal variability, highlighting the difficulty in separating any potentially forced response from natural variability.


Geophysical Research Letters | 2011

Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport

Ed Hawkins; Robin S. Smith; L. C. Allison; Jonathan M. Gregory; Tim Woollings; Holger Pohlmann; B. de Cuevas

The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.


Philosophical Transactions of the Royal Society A | 2010

Dynamical influences on European climate: an uncertain future

Tim Woollings

Climate science is coming under increasing pressure to deliver projections of future climate change at spatial scales as small as a few kilometres for use in impacts studies. But is our understanding and modelling of the climate system advanced enough to offer such predictions? Here we focus on the Atlantic–European sector, and on the effects of greenhouse gas forcing on the atmospheric and, to a lesser extent, oceanic circulations. We review the dynamical processes which shape European climate and then consider how each of these leads to uncertainty in the future climate. European climate is unique in many regards, and as such it poses a unique challenge for climate prediction. Future European climate must be considered particularly uncertain because (i) the spread between the predictions of current climate models is still considerable and (ii) Europe is particularly strongly affected by several processes which are known to be poorly represented in current models.


Journal of Climate | 2010

A regime view of the North Atlantic Oscillation and its response to anthropogenic forcing.

Tim Woollings; Abdel Hannachi; Brian J. Hoskins; Andrew G. Turner

Abstract The distribution of the daily wintertime North Atlantic Oscillation (NAO) index in the 40-yr ECMWF Re-Analysis (ERA-40) is significantly negatively skewed. Dynamical and statistical analyses both suggest that this skewness reflects the presence of two distinct regimes—referred to as “Greenland blocking” and “subpolar jet.” Changes in both the relative occurrence and in the structure of the regimes are shown to contribute to the long-term NAO trend over the ERA-40 period. This is contrasted with the simulation of the NAO in 100-yr control and doubled CO2 integrations of the third climate configuration of the Met Office Unified Model (HadCM3). The model has clear deficiencies in its simulation of the NAO in the control run, so its predictions of future behavior must be treated with caution. However, the subpolar jet regime does become more dominant under anthropogenic forcing and, while this change is small it is clearly statistically significant and does represent a real change in the nature of NA...


Journal of Climate | 2012

The North Atlantic Jet Stream under Climate Change and Its Relation to the NAO and EA Patterns

Tim Woollings; Michael Blackburn

AbstractThis paper describes recent variations of the North Atlantic eddy-driven jet stream and analyzes the mean response of the jet to anthropogenic forcing in climate models. Jet stream changes are analyzed both using a direct measure of the near-surface westerly wind maximum and using an EOF-based approach. This allows jet stream changes to be related to the widely used leading patterns of variability: the North Atlantic Oscillation (NAO) and East Atlantic (EA) pattern. Viewed in NAO–EA state space, isolines of jet latitude and speed resemble a distorted polar coordinate system, highlighting the dependence of the jet stream quantities on both spatial patterns. Some differences in the results of the two methods are discussed, but both approaches agree on the general characteristics of the climate models. While there is some agreement between models on a poleward shift of the jet stream in response to anthropogenic forcing, there is still considerable spread between different model projections, especial...


Journal of the Atmospheric Sciences | 2011

Persistent Circulation Regimes and Preferred Regime Transitions in the North Atlantic

Christian Franzke; Tim Woollings; Olivia Martius

The persistent regime behavior of the eddy-driven jet stream over the North Atlantic is investigated. The North Atlantic jet stream variability is characterized by the latitude of the maximum lower tropospheric wind speedofthe40-yrECMWFRe-Analysis(ERA-40)datafortheperiod1December1957‐28February2002.A hidden Markov model (HMM) analysis reveals that the jet stream exhibits three persistent regimes that correspond to northern, southern, and central jet states. The regime states are closely related to the North Atlantic Oscillation and the eastern Atlantic teleconnection pattern. The regime states are associated with distinct changes in the storm tracks and the frequencyof occurrence of cyclonic and anticyclonic Rossbywave breaking. Three preferred regime transitions are identified, namely, southern to central jet, northern to southern jet, and central to northern jet. The preferred transitions can be interpreted as a preference for poleward propagation of the jet, but with the southern jet state entered via a dramatic shift from the northern state. Evidence is found that wave breaking is involved in two of the three preferred transitions (northern to southern jet and central to northern jet transitions). The predictability characteristics and the interannual variability in the frequency of occurrence of regimes are also discussed.

Collaboration


Dive into the Tim Woollings's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joaquim G. Pinto

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge