Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Frömel is active.

Publication


Featured researches published by Timo Frömel.


Circulation Research | 2013

MicroRNA-223 Antagonizes Angiogenesis by Targeting β1 Integrin and Preventing Growth Factor Signaling in Endothelial Cells

Lei Shi; Beate Fisslthaler; Nina Zippel; Timo Frömel; Jiong Hu; Amro Elgheznawy; Heinrich Heide; Rüdiger Popp; Ingrid Fleming

Rationale: Endothelial cells in situ are largely quiescent, and their isolation and culture are associated with the switch to a proliferative phenotype. Objective: To identify antiangiogenic microRNAs expressed by native endothelial cells that are altered after isolation and culture, as well as the protein targets that regulate responses to growth factors. Methods and Results: Profiling studies revealed that miR-223 was highly expressed in freshly isolated human, murine, and porcine endothelial cells, but those levels decreased in culture. In primary cultures of endothelial cells, vascular endothelial cell growth factor and basic fibroblast growth factor further decreased miR-223 expression. The overexpression of precursor-miR-223 did not affect basal endothelial cell proliferation but abrogated vascular endothelial cell growth factor–induced and basic fibroblast growth factor–induced proliferation, as well as migration and sprouting. Inhibition of miR-223 in vivo using specific antagomirs potentiated postnatal retinal angiogenesis in wild-type mice, whereas recovery of perfusion after femoral artery ligation and endothelial sprouting from aortic rings from adult miR-223−/y animals were enhanced. MiR-223 overexpression had no effect on the growth factor–induced activation of ERK1/2 but inhibited the vascular endothelial cell growth factor–induced and basic fibroblast growth factor–induced phosphorylation of their receptors and activation of Akt. &bgr;1 integrin was identified as a target of miR-223 and its downregulation reproduced the defects in growth factor receptor phosphorylation and Akt signaling seen after miR-223 overexpression. Reintroduction of &bgr;1 integrin into miR-223–ovexpressing cells was sufficient to rescue growth factor signaling and angiogenesis. Conclusions: These results indicate that miR-223 is an antiangiogenic microRNA that prevents endothelial cell proliferation at least partly by targeting &bgr;1 integrin.


PLOS ONE | 2011

Nitric Oxide-Induced Activation of the AMP-Activated Protein Kinase α2 Subunit Attenuates IκB Kinase Activity and Inflammatory Responses in Endothelial Cells

Elke Bess; Beate Fisslthaler; Timo Frömel; Ingrid Fleming

Background In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO). Methodology/Principal Findings Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2-/- mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2+/+ versus AMPKα2-/- mice. Conclusions These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols

Timo Frömel; Jiong Hu; Caroline Trouvain; Eduardo Barbosa-Sicard; Rüdiger Popp; Stefan Liebner; Stefanie Dimmeler; Bruce D. Hammock; Ingrid Fleming

Fatty acid epoxides are important lipid signaling molecules involved in the regulation of vascular tone and homeostasis. Tissue and plasma levels of these mediators are determined by the activity of cytochrome P450 epoxygenases and the soluble epoxide hydrolase (sEH), and targeting the latter is an effective way of manipulating epoxide levels in vivo. We investigated the role of the sEH in regulating the mobilization and proliferation of progenitor cells with vasculogenic/reparative potential. Our studies revealed that sEH down-regulation/inhibition impaired the development of the caudal vein plexus in zebrafish, and decreased the numbers of lmo2/cmyb-positive progenitor cells therein. In mice sEH inactivation attenuated progenitor cell proliferation (spleen colony formation), but the sEH products 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME) and 11,12- dihydroxyeicosatrienoic acid stimulated canonical Wnt signaling and rescued the effects of sEH inhibition. In murine bone marrow, the epoxide/diol content increased during G-CSF–induced progenitor cell expansion and mobilization, and both mobilization and spleen colony formation were reduced in sEH−/− mice. Similarly, sEH−/− mice showed impaired functional recovery following hindlimb ischemia, which was rescued following either the restoration of bone marrow sEH activity or treatment with 12,13-DiHOME. Thus, sEH activity is required for optimal progenitor cell proliferation, whereas long-term sEH inhibition is detrimental to progenitor cell proliferation, mobilization, and vascular repair.


Blood | 2012

Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes

Voahanginirina Randriamboavonjy; Johann Isaak; Amro Elgheznawy; Frank Pistrosch; Timo Frömel; Xiaoke Yin; Klaus Badenhoop; Heinrich Heide; Manuel Mayr; Ingrid Fleming

Platelets from patients with diabetes are hyperreactive and demonstrate increased adhesiveness, aggregation, degranulation, and thrombus formation, processes that contribute to the accelerated development of vascular disease. Part of the problem seems to be dysregulated platelet Ca(2+) signaling and the activation of calpains, which are Ca(2+)-activated proteases that result in the limited proteolysis of substrate proteins and subsequent alterations in signaling. In the present study, we report that the activation of μ- and m-calpain in patients with type 2 diabetes has profound effects on the platelet proteome and have identified septin-5 and the integrin-linked kinase (ILK) as novel calpain substrates. The calpain-dependent cleavage of septin-5 disturbed its association with syntaxin-4 and promoted the secretion of α-granule contents, including TGF-β and CCL5. Calpain was also released by platelets and cleaved CCL5 to generate a variant with enhanced activity. Calpain activation also disrupted the ILK-PINCH-Parvin complex and altered platelet adhesion and spreading. In diabetic mice, calpain inhibition reversed the effects of diabetes on platelet protein cleavage, decreased circulating CCL5 levels, reduced platelet-leukocyte aggregate formation, and improved platelet function. The results of the present study indicate that diabetes-induced platelet dysfunction is mediated largely by calpain activation and suggest that calpain inhibition may be an effective way of preserving platelet function and eventually decelerating atherothrombosis development.


Blood | 2010

AMPK α2 subunit is involved in platelet signaling, clot retraction, and thrombus stability.

Voahanginirina Randriamboavonjy; Johann Isaak; Timo Frömel; Benoit Viollet; Beate Fisslthaler; Klaus T. Preissner; Ingrid Fleming

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a regulator of energy balance at the cellular and whole-body levels, but little is known about the role of AMPK in platelet activation. We report that both the α1 and α2 AMPK isoforms are expressed by human and murine platelets and that thrombin elicits the phosphorylation of AMPKα as well as the upstream kinase, liver kinase B1 (LKB1). In human platelets, the kinase inhibitors iodotubercidin and compound C significantly inhibited thrombin-induced platelet aggregation and clot retraction without affecting the initial increase in [Ca(2+)](i). Clot retraction was also impaired in platelets from AMPKα2(-/-) mice but not from wild-type littermates or AMPKα1(-/-) mice. Moreover, rebleeding was more frequent in AMPKα2(-/-) mice, and the FeCl(3)-induced thrombi formed in AMPKα2(-/-) mice were unstable. Mechanistically, AMPKα2 was found to phosphorylate in vitro the Src-family kinase, Fyn, and isoform deletion resulted in the attenuated threonine phosphorylation of Fyn as well as the subsequent tyrosine phosphorylation of its substrate, β3 integrin. These data indicate that AMPKα2-by affecting Fyn phosphorylation and activity-plays a key role in platelet αIIbβ3 integrin signaling, leading to clot retraction and thrombus stability.


Journal of Pharmacology and Experimental Therapeutics | 2014

The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein.

Yindi Ding; Timo Frömel; Rüdiger Popp; John R. Falck; Wolf Hagen Schunck; Ingrid Fleming

Cytochrome P450–derived epoxides of arachidonic acid [i.e., the epoxyeicosatrienoic acids (EETs)] are important lipid signaling molecules involved in the regulation of vascular tone and angiogenesis. Because many actions of 11,12-cis-epoxyeicosatrienoic acid (EET) are dependent on the activation of protein kinase A (PKA), the existence of a cell-surface Gs-coupled receptor has been postulated. To assess whether the responses of endothelial cells to 11,12-EET are enantiomer specific and linked to a potential G protein–coupled receptor, we assessed 11,12-EET-induced, PKA-dependent translocation of transient receptor potential (TRP) C6 channels, as well as angiogenesis. In primary cultures of human endothelial cells, (±)-11,12-EET led to the rapid (30 seconds) translocation a TRPC6-V5 fusion protein, an effect reproduced by 11(R),12(S)-EET, but not by 11(S),12(R)-EET or (±)-14,15-EET. Similarly, endothelial cell migration and tube formation were stimulated by (±)-11,12-EET and 11(R),12(S)-EET, whereas 11(S),12(R)-EET and 11,12-dihydroxyeicosatrienoic acid were without effect. The effects of (±)-11,12-EET on TRP channel translocation and angiogenesis were sensitive to EET antagonists, and TRP channel trafficking was also prevented by a PKA inhibitor. The small interfering RNA-mediated downregulation of Gs in endothelial cells had no significant effect on responses stimulated by vascular endothelial growth or a PKA activator but abolished responses to (±)-11,12-EET. The downregulation of Gq/11 failed to prevent 11,12-EET–induced TRPC6 channel translocation or the formation of capillary-like structures. Taken together, our results suggest that a Gs-coupled receptor in the endothelial cell membrane responds to 11(R),12(S)-EET and mediates the PKA-dependent translocation and activation of TRPC6 channels, as well as angiogenesis.


Journal of Cell Biology | 2014

Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid

Jiong Hu; Rüdiger Popp; Timo Frömel; Manuel Ehling; Khader Awwad; Ralf H. Adams; Hans-Peter Hammes; Ingrid Fleming

Cytochrome P450 (CYP) epoxygenases generate bioactive lipid epoxides which can be further metabolized to supposedly less active diols by the soluble epoxide hydrolase (sEH). As the role of epoxides and diols in angiogenesis is unclear, we compared retinal vasculature development in wild-type and sEH−/− mice. Deletion of the sEH significantly delayed angiogenesis, tip cell, and filopodia formation, a phenomenon associated with activation of the Notch signaling pathway. In the retina, sEH was localized in Muller glia cells, and Muller cell–specific sEH deletion reproduced the sEH−/− retinal phenotype. Lipid profiling revealed that sEH deletion decreased retinal and Muller cell levels of 19,20–dihydroxydocosapentaenoic acid (DHDP), a diol of docosahexenoic acid (DHA). 19,20-DHDP suppressed endothelial Notch signaling in vitro via inhibition of the γ-secretase and the redistribution of presenilin 1 from lipid rafts. Moreover, 19,20-DHDP, but not the parent epoxide, was able to rescue the defective angiogenesis in sEH−/− mice as well as in animals lacking the Fbxw7 ubiquitin ligase, which demonstrate strong basal activity of the Notch signaling cascade. These studies demonstrate that retinal angiogenesis is regulated by a novel form of neuroretina–vascular interaction involving the sEH-dependent generation of a diol of DHA in Muller cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Transforming Growth Factor-β–Activated Kinase 1 Regulates Angiogenesis via AMP-Activated Protein Kinase-α1 and Redox Balance in Endothelial Cells

Nina Zippel; Randa Abdel Malik; Timo Frömel; Rüdiger Popp; Elke Bess; Boris Strilic; Nina Wettschureck; Ingrid Fleming; Beate Fisslthaler

Objective—Transforming growth factor-&bgr;–activated kinase 1 (TAK1) is a mitogen-activated protein 3-kinase and an AMP-activated protein kinase (AMPK) kinase in some cell types. Although TAK1−/− mice display defects in developmental vasculogenesis, the role of TAK1 in endothelial cells has not been investigated in detail. Approach and Results—TAK1 downregulation (small interfering RNA) in human endothelial cells attenuated proliferation without inducing apoptosis and diminished endothelial cell migration, as well as tube formation. Cytokine- and vascular endothelial growth factor (VEGF)–induced endothelial cell sprouting in a modified spheroid assay were abrogated by TAK1 downregulation. Moreover, VEGF–induced endothelial sprouting was impaired in aortic rings from mice lacking TAK1 in endothelial cells (TAK&Dgr;EC). TAK1 inhibition and downregulation also inhibited VEGF–stimulated phosphorylation of several kinases, including AMPK. Proteomic analyses revealed that superoxide dismutase 2 (SOD2) expression was reduced in TAK1-deficient endothelial cells, resulting in attenuated hydrogen peroxide production but increased mitochondrial superoxide production. Endothelial cell SOD2 expression was also attenuated by AMPK inhibition and in endothelial cells from AMPK&agr;1−/− mice but was unaffected by inhibitors of c-Jun N-terminal kinase, p38, extracellular signal–regulated kinase 1/2, or phosphatidylinositol 3-kinase/Akt. Moreover, the impaired endothelial sprouting from TAK&Dgr;EC aortic rings was abrogated in the presence of polyethylene glycol-SOD, and tube formation was normalized by the overexpression of SOD2. A similar rescue of angiogenesis was observed in polyethylene glycol-SOD–treated aortic rings from mice with endothelial cell–specific deletion of the AMPK&agr;1. Conclusions—These results establish TAK1 as an AMPK&agr;1 kinase that regulates vascular endothelial growth factor–induced and cytokine-induced angiogenesis by modulating SOD2 expression and the superoxide anion:hydrogen peroxide balance.


Journal of Biological Chemistry | 2009

Inhibition of the Soluble Epoxide Hydrolase by Tyrosine Nitration

Eduardo Barbosa-Sicard; Timo Frömel; Benjamin Keserü; Ralf P. Brandes; Christophe Morisseau; Bruce D. Hammock; Thomas Braun; Marcus Krüger; Ingrid Fleming

Inhibition of the soluble epoxide hydrolase (sEH) has beneficial effects on vascular inflammation and hypertension indicating that the enzyme may be a promising target for drug development. As the enzymatic core of the hydrolase domain of the human sEH contains two tyrosine residues (Tyr383 and Tyr466) that are theoretically crucial for enzymatic activity, we addressed the hypothesis that the activity of the sEH may be affected by nitrosative stress. Epoxide hydrolase activity was detected in human and murine endothelial cells as well in HEK293 cells and could be inhibited by either authentic peroxynitrite (ONOO−) or the ONOO− generator 3-morpholino-sydnonimine (SIN-1). Protection of the enzymatic core with 1-adamantyl-3-cyclohexylurea in vitro decreased sensitivity to SIN-1. Both ONOO− and SIN-1 elicited the tyrosine nitration of the sEH protein and mass spectrometry analysis of tryptic fragments revealed nitration on several tyrosine residues including Tyr383 and Tyr466. Mutation of the latter residues to phenylalanine was sufficient to abrogate epoxide hydrolase activity. In vivo, streptozotocin-induced diabetes resulted in the tyrosine nitration of the sEH in murine lungs and a significant decrease in its activity. Taken together, these data indicate that the activity of the sEH can be regulated by the tyrosine nitration of the protein. Moreover, nitrosative stress would be expected to potentiate the physiological actions of arachidonic acid epoxides by preventing their metabolism to the corresponding diols.


Antioxidants & Redox Signaling | 2014

Electrophilic Fatty Acid Species Inhibit 5-Lipoxygenase and Attenuate Sepsis-Induced Pulmonary Inflammation

Khader Awwad; Svenja Dorothea Steinbrink; Timo Frömel; Nicole Lill; Johann Isaak; Ann-Kathrin Häfner; Jessica Roos; Bettina Hofmann; Heinrich Heide; Gerd Geisslinger; Dieter Steinhilber; Bruce A. Freeman; Thorsten J. Maier; Ingrid Fleming

AIMS The reaction of nitric oxide and nitrite-derived species with polyunsaturated fatty acids yields electrophilic fatty acid nitroalkene derivatives (NO2-FA), which display anti-inflammatory properties. Given that the 5-lipoxygenase (5-LO, ALOX5) possesses critical nucleophilic amino acids, which are potentially sensitive to electrophilic modifications, we determined the consequences of NO2-FA on 5-LO activity in vitro and on 5-LO-mediated inflammation in vivo. RESULTS Stimulation of human polymorphonuclear leukocytes (PMNL) with nitro-oleic (NO2-OA) or nitro-linoleic acid (NO2-LA) (but not the parent lipids) resulted in the concentration-dependent and irreversible inhibition of 5-LO activity. Similar effects were observed in cell lysates and using the recombinant human protein, indicating a direct reaction with 5-LO. NO2-FAs did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1 (ALOX15) in intact cells or the recombinant protein. The NO2-FA-induced inhibition of 5-LO was attributed to the alkylation of Cys418, and the exchange of Cys418 to serine rendered 5-LO insensitive to NO2-FA. In vivo, the systemic administration of NO2-OA to mice decreased neutrophil and monocyte mobilization in response to lipopolysaccharide (LPS), attenuated the formation of the 5-LO product 5-hydroxyeicosatetraenoic acid (5-HETE), and inhibited lung injury. The administration of NO2-OA to 5-LO knockout mice had no effect on LPS-induced neutrophil or monocyte mobilization as well as on lung injury. INNOVATION Prophylactic administration of NO2-OA to septic mice inhibits inflammation and promotes its resolution by interfering in 5-LO-mediated inflammatory processes. CONCLUSION NO2-FAs directly and irreversibly inhibit 5-LO and attenuate downstream acute inflammatory responses.

Collaboration


Dive into the Timo Frömel's collaboration.

Top Co-Authors

Avatar

Ingrid Fleming

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Rüdiger Popp

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Jiong Hu

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Khader Awwad

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Beate Fisslthaler

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Heinrich Heide

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Johann Isaak

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Amro Elgheznawy

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina Zippel

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge