Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Hytönen is active.

Publication


Featured researches published by Timo Hytönen.


Plant Physiology | 2012

Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry, Fragaria vesca

Elli A. Koskela; Katriina Mouhu; Maria C. Albani; Takeshi Kurokura; Marja Rantanen; Daniel J. Sargent; Nicholas H. Battey; George Coupland; Paula Elomaa; Timo Hytönen

Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.


The Plant Cell | 2013

The Fragaria vesca Homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 Represses Flowering and Promotes Vegetative Growth

Katriina Mouhu; Takeshi Kurokura; Elli A. Koskela; Victor A. Albert; Paula Elomaa; Timo Hytönen

This work reveals that the woodland strawberry ortholog of the floral activator SOC1 (Fv SOC1) is the general regulator of the photoperiodic development in this perennial short-day plant. It suppresses photoperiodic flowering by activating a major floral repressor Fv TFL1 and mediates photoperiodic signaling to promote runner development through regulating gibberellin biosynthetic genes. In the annual long-day plant Arabidopsis thaliana, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv TERMINAL FLOWER1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv FLOWERING LOCUS T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.


Journal of Experimental Botany | 2013

The regulation of seasonal flowering in the Rosaceae

Takeshi Kurokura; Naozumi Mimida; Nicholas H. Battey; Timo Hytönen

Molecular mechanisms regulating the flowering process have been extensively studied in model annual plants; in perennials, however, understanding of the molecular mechanisms controlling flowering has just started to emerge. Here we review the current state of flowering research in perennial plants of the rose family (Rosaceae), which is one of the most economically important families of horticultural plants. Strawberry (Fragaria spp.), raspberry (Rubus spp.), rose (Rosa spp.), and apple (Malus spp.) are used to illustrate how photoperiod and temperature control seasonal flowering in rosaceous crops. We highlight recent molecular studies which have revealed homologues of terminal flower1 (TFL1) to be major regulators of both the juvenile to adult, and the vegetative to reproductive transitions in various rosaceous species. Additionally, recent advances in understanding of the regulation of TFL1 are discussed.


BMC Plant Biology | 2009

Gibberellin mediates daylength-controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch)

Timo Hytönen; Paula Elomaa; Thomas Moritz; Olavi Junttila

BackgroundDifferentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA) in regulation of shoot differentiation in strawberry (Fragaria × ananassa Duch.) cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot) or to crown branches (short shoot) is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown.ResultsWe found that both prohexadione-calcium and short photoperiod inhibited runner initiation and consequently led to induction of crown branching. In both cases, this correlated with a similar decline in GA1 level. Exogenous GA3 completely reversed the effect of prohexadione-calcium in a long photoperiod, but was only marginally effective in short-day grown plants. However, transfer of GA3-treated plants from short days to long days restored the normal runner formation. This did not occur in plants that were not treated with GA3. We also studied GA signalling homeostasis and found that the expression levels of several GA biosynthetic, signalling and target genes were similarly affected by prohexadione-calcium and short photoperiod in runner tips and axillary buds, respectively.ConclusionGA is needed for runner initiation in strawberry, and the inhibition of GA biosynthesis leads to the formation of crown branches. Our findings of similar changes in GA levels and in GA signalling homeostasis after prohexadione-calcium and short-day treatments, and photoperiod-dependent responsiveness of the axillary buds to GA indicate that GA plays a role also in the photoperiod-regulated differentiation of axillary buds. We propose that tightly regulated GA activity may control induction of cell division in subapical tissues of axillary buds, being one of the signals determining bud fate.


Plant Biotechnology Journal | 2012

Virus‐induced gene silencing for Asteraceae—a reverse genetics approach for functional genomics in Gerbera hybrida

Xianbao Deng; Paula Elomaa; Cuong X. Nguyen; Timo Hytönen; Jari P. T. Valkonen; Teemu H. Teeri

Virus-induced gene silencing (VIGS) is a natural defence mechanism in plants which leads to sequence-specific degradation of viral RNA. For identifying gene functions, Tobacco rattle virus (TRV)-based VIGS has been applied for silencing of endogenous genes in many plant species. Gerbera hybrida (Asteraceae) has emerged as a novel model for studies in flower development and secondary metabolism. For this highly heterozygous species, functional studies have been conducted through reverse genetic methods by producing stable transgenic lines, which, however, is labour-intensive and time-consuming. For the development of TRV-based VIGS system for gerbera, and for the first time for an Asteraceaeous species, we screened several gerbera cultivars and optimized the agroinfiltration methods for efficient silencing. Gene fragments for gerbera phytoene desaturase (GPDS) and Mg-chelatase subunits (GChl-H and GChl-I), expressed from a TRV vector, induced silencing phenotypes in leaves, scapes, and involucral bracts indicating their feasibility as markers for green tissues. In addition, robust silencing symptoms were achieved in gerbera floral tissues by silencing the anthocyanin pathway gene for chalcone synthase (GCHS1) and a gerbera B-type MADS-box gene globosa (GGLO1), confirming the phenotypes previously observed in stable transgenic lines. Unexpectedly, photobleaching induced by GPDS and GChl-H or GChl-I silencing, or by the herbicide norflurazon, resulted in silencing of the polyketide synthase gene G2PS1, which has no apparent connections to carotenoid or chlorophyll biosynthesis. We have shown feasibility of VIGS for functional studies in gerbera, but our results also show that selection of the marker gene for silencing must be critically evaluated.


Frontiers in Plant Science | 2014

Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca

Marja Rantanen; Takeshi Kurokura; Katriina Mouhu; Paulo Pinho; Eino Tetri; Liisa Halonen; Pauliina Palonen; Paula Elomaa; Timo Hytönen

Control of flowering in the perennial model, the woodland strawberry (Fragaria vesca L.), involves distinct molecular mechanisms that result in contrasting photoperiodic flowering responses and growth cycles in different accessions. The F. vesca homolog of TERMINAL FLOWER1 (FvTFL1) functions as a key floral repressor that causes short-day (SD) requirement of flowering and seasonal flowering habit in the SD strawberry. In contrast, perpetual flowering F. vesca accessions lacking functional FvTFL1 show FLOWERING LOCUS T (FvFT1)-dependent early flowering specifically under long-days (LD). We show here that the end-of-day far-red (FR) and blue (B) light activate the expression of FvFT1 and the F. vesca homolog of SUPPRESSOR OF THE OVEREXPRESSION OF CONSTANS (FvSOC1) in both SD and LD strawberries, whereas low expression levels are detected in red (R) and SD treatments. By using transgenic lines, we demonstrate that FvFT1 advances flowering under FR and B treatments compared to R and SD treatments in the LD strawberry, and that FvSOC1 is specifically needed for the B light response. In the SD strawberry, flowering responses to these light quality treatments are reversed due to up-regulation of the floral repressor FvTFL1 in parallel with FvFT1 and FvSOC1. Our data highlights the central role of FvFT1 in the light quality dependent flower induction in the LD strawberry and demonstrates that FvTFL1 reverses not only photoperiodic requirements but also light quality effects on flower induction in the SD strawberry.


Lighting Research & Technology | 2013

Dynamic control of supplemental lighting intensity in a greenhouse environment

Paulo Pinho; Timo Hytönen; Marja Rantanen; Paula Elomaa; Liisa Halonen

The global increase in energy prices, the urgent need to reduce CO2 emissions to the atmosphere and the high energy usage are currently the major threats to the greenhouse industry. Optimised control of the lighting quality, quantity and periodicity can contribute to improvements in the productivity and energy efficiency of greenhouses. In this paper, the effects of dynamic control of supplemental lighting intensity on electricity consumption and fresh weight accumulation of lettuce plants are investigated. The use of the dynamic lighting control resulted in a 20% reduction in the electricity consumption in comparison to a similar lighting system operated under a discontinuous on–off regime. However, there was no statistically significant difference between both regimes in terms of plants’ average fresh weight accumulated per electrical energy unit consumed.


Plant Biotechnology Journal | 2016

TERMINAL FLOWER1 is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (Fragaria × ananassa Duch.)

Elli A. Koskela; Anita Sønsteby; Henryk Flachowsky; Ola M. Heide; Magda-Viola Hanke; Paula Elomaa; Timo Hytönen

Summary The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short‐day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)–SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)–TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short‐day cultivar ‘Elsanta’ is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1–FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars.


Plant Journal | 2015

Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering.

Marja Rantanen; Takeshi Kurokura; Panpan Jiang; Katriina Mouhu; Timo Hytönen

Photoperiod and temperature are major environmental signals affecting flowering in plants. Although molecular pathways mediating these signals have been well characterized in the annual model plant Arabidopsis, much less information is known in perennials. Many perennials including the woodland strawberry (Fragaria vesca L.) are induced to flower in response to decreasing photoperiod and temperature in autumn and they flower following spring. We showed earlier that, in contrast with Arabidopsis, the photoperiodic induction of flowering in strawberry occurs in short days (SD) when the decrease in FvFT1 (flowering locus T) and FvSOC1 (suppressor of the overexpression of constans1) expression leads to lower mRNA levels of the floral repressor, FvTFL1 (terminal flower1). By using transgenic lines and gene expression analyses, we show evidence that the temperature-mediated changes in the FvTFL1 mRNA expression set critical temperature limits for the photoperiodic flowering in strawberry. At temperatures below 13 °C, low expression level of FvTFL1 in both SD and long days (LD) allows flower induction to occur independently of the photoperiod. Rising temperature gradually increases FvTFL1 mRNA levels under LD, and at temperatures above 13 °C, SD is required for the flower induction that depends on the deactivation of FvSOC1 and FvTFL1. However, an unknown transcriptional activator, which functions independently of FvSOC1, enhances the expression of FvTFL1 at 23 °C preventing photoperiodic flowering. We suggest that the observed effect of the photoperiod × temperature interaction on FvTFL1 mRNA expression may allow strawberry to induce flowers in correct time in different climates.


GigaScience | 2018

Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

Patrick P. Edger; Robert VanBuren; Marivi Colle; Thomas J. Poorten; Ching Man Wai; Chad E. Niederhuth; Elizabeth I. Alger; Shujun Ou; Charlotte B. Acharya; Jie Wang; Pete Callow; Michael R. McKain; Jinghua Shi; Chad Collier; Zhiyong Xiong; Jeffrey P. Mower; Janet P. Slovin; Timo Hytönen; Ning Jiang; Kevin L. Childs; Steven J. Knapp

Abstract Background Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.

Collaboration


Dive into the Timo Hytönen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Sargent

East Malling Research Station

View shared research outputs
Researchain Logo
Decentralizing Knowledge