Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timo Lanki is active.

Publication


Featured researches published by Timo Lanki.


The Lancet | 2014

Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project

Rob Beelen; Ole Raaschou-Nielsen; Massimo Stafoggia; Zorana Jovanovic Andersen; Gudrun Weinmayr; Barbara Hoffmann; Kathrin Wolf; Evangelia Samoli; Paul Fischer; Mark J. Nieuwenhuijsen; Paolo Vineis; Wei W. Xun; Klea Katsouyanni; Konstantina Dimakopoulou; Anna Oudin; Bertil Forsberg; Lars Modig; Aki S. Havulinna; Timo Lanki; Anu W. Turunen; Bente Oftedal; Wenche Nystad; Per Nafstad; Ulf de Faire; Nancy L. Pedersen; Claes Göran Östenson; Laura Fratiglioni; Johanna Penell; Michal Korek; Göran Pershagen

BACKGROUND Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. METHODS We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. FINDINGS The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). INTERPRETATION Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. FUNDING European Communitys Seventh Framework Program (FP7/2007-2011).


Circulation | 2002

Particulate Air Pollution and Risk of ST-Segment Depression During Repeated Submaximal Exercise Tests Among Subjects With Coronary Heart Disease The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) Study

Juha Pekkanen; Annette Peters; Gerard Hoek; Pekka Tiittanen; Bert Brunekreef; Jeroen J. de Hartog; Joachim Heinrich; Angela Ibald-Mulli; Wolfgang G. Kreyling; Timo Lanki; Kirsi L. Timonen; Esko Vanninen

Background—Daily variations in ambient particulate air pollution have been associated with cardiovascular mortality and morbidity. We therefore assessed the associations between levels of the 3 main modes of urban aerosol distribution and the occurrence of ST-segment depressions during repeated exercise tests. Methods and Results—Repeated biweekly submaximal exercise tests were performed during 6 months among adult subjects with stable coronary heart disease in Helsinki, Finland. Seventy-two exercise-induced ST-segment depressions >0.1 mV occurred during 342 exercise tests among 45 subjects. Simultaneously, particle mass <2.5 &mgr;m (PM2.5) and the number concentrations of ultrafine particles (particle diameter 10 to 100 nm [NC0.01–0.1]) and accumulation mode particles (100 to 1000 nm [NC0.1–1]) were monitored at a central site. Levels of particulate air pollution 2 days before the clinic visit were significantly associated with increased risk of ST-segment depression during exercise test. The association was most consistent for measures of particles reflecting accumulation mode particles (odds ratio 3.29; 95% CI, 1.57 to 6.92 for NC0.1–1 and 2.84; 95% CI, 1.42 to 5.66 for PM2.5), but ultrafine particles also had an effect (odds ratio 3.14; 95% CI, 1.56 to 6.32), which was independent of PM2.5. Also, gaseous pollutants NO2 and CO were associated with an increased risk for ST-segment depressions. No consistent association was observed for coarse particles. The associations tended to be stronger among subjects who did not use &bgr;-blockers. Conclusions—The present results suggest that the effect of particulate air pollution on cardiovascular morbidity is at least partly mediated through increased susceptibility to myocardial ischemia.


Environmental Science & Technology | 2012

Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project

Marloes Eeftens; Rob Beelen; Kees de Hoogh; Tom Bellander; Giulia Cesaroni; Marta Cirach; Christophe Declercq; Audrius Dedele; Evi Dons; Audrey de Nazelle; Konstantina Dimakopoulou; Kirsten Thorup Eriksen; Grégoire Falq; Paul Fischer; Claudia Galassi; Regina Grazuleviciene; Joachim Heinrich; Barbara Hoffmann; Michael Jerrett; Dirk Keidel; Michal Korek; Timo Lanki; Sarah Lindley; Christian Madsen; Anna Moelter; Gizella Nádor; Mark J. Nieuwenhuijsen; Michael Nonnemacher; Xanthi Pedeli; Ole Raaschou-Nielsen

Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations and estimating individual exposure for participants of cohort studies. Within the ESCAPE project, concentrations of PM(2.5), PM(2.5) absorbance, PM(10), and PM(coarse) were measured in 20 European study areas at 20 sites per area. GIS-derived predictor variables (e.g., traffic intensity, population, and land-use) were evaluated to model spatial variation of annual average concentrations for each study area. The median model explained variance (R(2)) was 71% for PM(2.5) (range across study areas 35-94%). Model R(2) was higher for PM(2.5) absorbance (median 89%, range 56-97%) and lower for PM(coarse) (median 68%, range 32- 81%). Models included between two and five predictor variables, with various traffic indicators as the most common predictors. Lower R(2) was related to small concentration variability or limited availability of predictor variables, especially traffic intensity. Cross validation R(2) results were on average 8-11% lower than model R(2). Careful selection of monitoring sites, examination of influential observations and skewed variable distributions were essential for developing stable LUR models. The final LUR models are used to estimate air pollution concentrations at the home addresses of participants in the health studies involved in ESCAPE.


Circulation | 2005

Ambient Air Pollution Is Associated With Increased Risk of Hospital Cardiac Readmissions of Myocardial Infarction Survivors in Five European Cities

Stephanie von Klot; Annette Peters; Pasi Aalto; Tom Bellander; Niklas Berglind; Daniela D’Ippoliti; Roberto Elosua; Allmut Hörmann; Markku Kulmala; Timo Lanki; Hannelore Löwel; Juha Pekkanen; Sally Picciotto; Jordi Sunyer; Francesco Forastiere

Background— Ambient air pollution has been associated with increases in acute morbidity and mortality. The objective of this study was to evaluate the short-term effects of urban air pollution on cardiac hospital readmissions in survivors of myocardial infarction, a potentially susceptible subpopulation. Methods and Results— In this European multicenter cohort study, 22 006 survivors of a first myocardial infarction were recruited in Augsburg, Germany; Barcelona, Spain; Helsinki, Finland; Rome, Italy; and Stockholm, Sweden, from 1992 to 2000. Hospital readmissions were recorded in 1992 to 2001. Ambient nitrogen dioxide, carbon monoxide, ozone, and mass of particles <10 &mgr;m (PM10) were measured. Particle number concentrations were estimated as a proxy for ultrafine particles. Short-term effects of air pollution on hospital readmissions for myocardial infarction, angina pectoris, and cardiac causes (myocardial infarction, angina pectoris, dysrhythmia, or heart failure) were studied in city-specific Poisson regression analyses with subsequent pooling. During follow-up, 6655 cardiac readmissions were observed. Cardiac readmissions increased in association with same-day concentrations of PM10 (rate ratio [RR] 1.021, 95% CI 1.004 to 1.039) per 10 &mgr;g/m3) and estimated particle number concentrations (RR 1.026 [95% CI 1.005 to 1.048] per 10 000 particles/cm3). Effects of similar strength were observed for carbon monoxide (RR 1.014 [95% CI 1.001 to 1.026] per 200 &mgr;g/m3 [0.172 ppm]), nitrogen dioxide (RR 1.032 [95% CI 1.013 to 1.051] per 8 &mgr;g/m3 [4.16 ppb]), and ozone (RR 1.026 [95% CI 1.001 to 1.051] per 15 &mgr;g/m3 [7.5 ppb]). Pooled effect estimates for angina pectoris and myocardial infarction readmissions were comparable. Conclusions— The results suggest that ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in 5 European cities.


Environmental Health Perspectives | 2007

Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors.

Regina Rückerl; Sonja Greven; Petter Ljungman; Pasi Aalto; Charalambos Antoniades; Tom Bellander; Niklas Berglind; Christina Chrysohoou; Francesco Forastiere; Bénédicte Jacquemin; Stephanie von Klot; Wolfgang Koenig; Helmut Küchenhoff; Timo Lanki; Juha Pekkanen; Carlo A. Perucci; Alexandra Schneider; Jordi Sunyer; Annette Peters

Background Numerous studies have found that ambient air pollution has been associated with cardiovascular disease exacerbation. Objectives Given previous findings, we hypothesized that particulate air pollution might induce systemic inflammation in myocardial infarction (MI) survivors, contributing to an increased vulnerability to elevated concentrations of ambient particles. Methods A prospective longitudinal study of 1,003 MI survivors was performed in six European cities between May 2003 and July 2004. We compared repeated measurements of interleukin 6 (IL-6), fibrinogen, and C-reactive protein (CRP) with concurrent levels of air pollution. We collected hourly data on particle number concentrations (PNC), mass concentrations of particulate matter (PM) < 10 μm (PM10) and < 2.5 μm (PM2.5), gaseous pollutants, and meteorologic data at central monitoring sites in each city. City-specific confounder models were built for each blood marker separately, adjusting for meteorology and time-varying and time-invariant covariates. Data were analyzed with mixed-effects models. Results Pooled results show an increase in IL-6 when concentrations of PNC were elevated 12–17 hr before blood withdrawal [percent change of geometric mean, 2.7; 95% confidence interval (CI), 1.0–4.6]. Five day cumulative exposure to PM10 was associated with increased fibrinogen concentrations (percent change of arithmetic mean, 0.6; 95% CI, 0.1–1.1). Results remained stable for smokers, diabetics, and patients with heart failure. No consistent associations were found for CRP. Conclusions Results indicate an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins, as seen in increased fibrinogen levels. This might provide a link between air pollution and adverse cardiac events.


BMJ | 2014

Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project

Giulia Cesaroni; Francesco Forastiere; Massimo Stafoggia; Zorana Jovanovic Andersen; Chiara Badaloni; Rob Beelen; Barbara Caracciolo; Ulf de Faire; Raimund Erbel; Kirsten Thorup Eriksen; Laura Fratiglioni; Claudia Galassi; Regina Hampel; Margit Heier; Frauke Hennig; Agneta Hilding; Barbara Hoffmann; Danny Houthuijs; Karl-Heinz Jöckel; Michal Korek; Timo Lanki; Karin Leander; Patrik K. E. Magnusson; Enrica Migliore; Caes-Göran Ostenson; Kim Overvad; Nancy L. Pedersen; Juha Pekkanen J; Johanna Penell; Göran Pershagen

Objectives To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Design Prospective cohort studies and meta-analysis of the results. Setting Cohorts in Finland, Sweden, Denmark, Germany, and Italy. Participants 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. Main outcome measures Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. Results 5157 participants experienced incident events. A 5 μg/m3 increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m3 increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m3 for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m3 increase in PM2.5) and below 40 μg/m3 for PM10 (1.12, 1.00 to 1.27, for 10 μg/m3 increase in PM10). Positive but non-significant associations were found with other pollutants. Conclusions Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.


Journal of The Air & Waste Management Association | 2000

Personal exposure to fine particulate matter in elderly subjects : Relation between personal, indoor, and outdoor concentrations

Nicole A.H. Janssen; Jeroen J. de Hartog; Gerard Hoek; Bert Brunekreef; Timo Lanki; Kirsi L. Timonen; Juha Pekkanen

ABSTRACT The time-series correlation between ambient levels, indoor levels, and personal exposure to PM2.5 was assessed in panels of elderly subjects with cardiovascular disease in Amsterdam, the Netherlands, and Helsinki, Finland. Subjects were followed for 6 months with biweekly clinical visits. Each subjects indoor and personal exposure to PM2.5 was measured biweekly, during the 24-hr period preceding the clinical visits. Outdoor PM2.5 concentrations were measured at fixed sites. The absorption coefficients of all PM2.5 filters were measured as a marker for elemental carbon (EC). Regression analyses were conducted for each subject separately, and the distribution of the individual regression and correlation coefficients was investigated. Personal, indoor, and ambient concentrations were highly correlated within subjects over time. Median Pearsons R between personal and outdoor PM2.5 was 0.79 in Amsterdam and 0.76 in Helsinki. For absorption, these values were 0.93 and 0.81 for Amsterdam and Helsinki, respectively. The findings of this study provide further support for using fixed-site measurements as a measure of exposure to PM2.5 in epidemiological time-series studies.


Thorax | 2008

Urban Air Pollution And Asthma And Copd Hospital Emergency Room Visits

Jaana I. Halonen; Timo Lanki; Tarja Yli-Tuomi; Markku Kulmala; Pekka Tiittanen; Juha Pekkanen

Background: There is little previous information of the effects of size fractioned particulate air pollution and source specific fine particles (PM2.5; <2.5 μm) on asthma and chronic obstructive pulmonary disease (COPD) among children, adults and the elderly. Objectives: To determine the effects of daily variation in levels of different particle size fractions and gaseous pollutants on asthma and COPD by age group. Methods: Levels of particulate air pollution, NO2 and CO were measured from 1998 to 2004 at central outdoor monitoring sites in Helsinki, Finland. Associations between daily pollution levels and hospital emergency room visits were evaluated for asthma (ICD10: J45+J46) in children <15 years old, and for asthma and COPD (ICD10: J41+J44) in adults (15–64 years) and the elderly (⩾65 years). Results: Three to 5 day lagged increases in asthma visits were found among children in association with nucleation (<0.03 μm), Aitken (0.03–0.1 μm) and accumulation (0.1–0.29 μm) mode particles, gaseous pollutants and traffic related PM2.5 (7.8% (95% CI 3.5 to 12.3) for 1.1 μg/m3 increase in traffic related PM2.5 at lag 4). Pooled asthma–COPD visits among the elderly were associated with lag 0 of PM2.5, coarse particles, gaseous pollutants and long range transported and traffic related PM2.5 (3.9% (95% CI 0.28 to 7.7) at lag 0). Only accumulation mode and coarse particles were associated with asthma and COPD among adults. Conclusions: Among children, traffic related PM2.5 had delayed effects, whereas among the elderly, several types of particles had effects that were more immediate. These findings suggest that the mechanisms of the respiratory effects of air pollution, and responsible pollutants, differ by age group.


Journal of Exposure Science and Environmental Epidemiology | 2006

Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease : The ULTRA study

Kirsi L. Timonen; Esko Vanninen; Jeroen J. de Hartog; Angela Ibald-Mulli; Bert Brunekreef; Diane R. Gold; Joachim Heinrich; Gerard Hoek; Timo Lanki; Annette Peters; Tuula H. Tarkiainen; Pekka Tiittanen; Wolfgang G. Kreyling; Juha Pekkanen

Previous studies have shown an association between elevated concentrations of particulate air pollution and cardiovascular morbidity and mortality. Therefore, the association between daily variation of ultrafine and fine particulate air pollution and cardiac autonomic control measured as heart rate variability (HRV) was studied in a large multicenter study in Amsterdam, the Netherlands, Erfurt, Germany, and Helsinki, Finland. Elderly subjects (n=37 in Amsterdam, n=47 in both Erfurt and Helsinki) with stable coronary artery disease were followed for 6 months with biweekly clinical visits. During the visits, ambulatory electrocardiogram was recorded during a standardized protocol including a 5-min period of paced breathing. Time and frequency domain analyses of HRV were performed. A statistical model was built for each center separately. The mean 24-h particle number concentration (NC) (1000/cm3) of ultrafine particles (diameter 0.01–0.1 μm) was 17.3 in Amsterdam, 21.1 in Erfurt, and 17.0 in Helsinki. The corresponding values for PM2.5 were 20.0, 23.1, and 12.7 μg/m3. During paced breathing, ultrafine particles, NO2, and CO were at lags of 0–2 days consistently and significantly associated with decreased low-to-high frequency ratio (LF/HF), a measure of sympathovagal balance. In a pooled analysis across the centers, LF/HF decreased by 13.5% (95% confidence interval: −20.1%, −7.0%) for each 10,000/cm3 increase in the NC of ultrafine particles (2-day lag). PM2.5 was associated with reduced HF and increased LF/HF in Helsinki, whereas the opposite was true in Erfurt, and in Amsterdam, there were no clear associations between PM2.5 and HRV. The results suggest that the cardiovascular effects of ambient ultrafine and PM2.5 can differ from each other and that their effect may be modified by the characteristics of the exposed subjects and the sources of PM2.5.


Epidemiology | 2009

Particulate Air Pollution and Acute Cardiorespiratory Hospital Admissions and Mortality Among the Elderly

Jaana I. Halonen; Timo Lanki; Tarja Yli-Tuomi; Pekka Tiittanen; Markku Kulmala; Juha Pekkanen

Background: It is known that particulate air pollution affects cardiorespiratory health; however, it is unclear which particle size fractions and sources of particles are responsible for the health effects. Methods: Daily levels of nucleation (<0.03 &mgr;m), Aitken (0.03–0.1 &mgr;m), accumulation (0.1–0.29 &mgr;m), and coarse mode (2.5–10 &mgr;m) particles, particles with diameter <2.5 &mgr;m (PM2.5), and gaseous pollutants were measured at central outdoor measurement sites in Helsinki, Finland between 1998 and 2004. We determined the associations of particles with daily cardiorespiratory mortality and acute hospital admissions among the elderly (≥65 years). For the analyses we used Poisson generalized additive models and for the source apportionment of PM2.5 we used the EPA positive matrix factorization method. Results: There was a suggestion of an association of hospital admissions for arrhythmia with Aitken mode particles and PM2.5 from traffic. Otherwise few associations were observed between various sizes and types of particles and either cardiovascular admissions or mortality. In contrast, most particle fractions had positive associations with admissions for pneumonia and asthma-chronic obstructive pulmonary disease (COPD). The strongest and most consistent associations were found for accumulation mode particles (3.1%; 95% confidence interval = 0.43–5.8 for pneumonia over the 5-day mean, and 3.8%; 1.3–6.3 for asthma-COPD at lag 0, for an interquartile increase in particles). We also found a positive association of respiratory mortality mainly with accumulation mode particles (5.1%; 1.2–9.0 at lag 0). Conclusions: All particle fractions including Aitken, accumulation, and coarse mode had especially adverse respiratory health effects among the elderly. Overall associations were stronger for respiratory than for cardiovascular outcomes.

Collaboration


Dive into the Timo Lanki's collaboration.

Researchain Logo
Decentralizing Knowledge