Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timon Idema is active.

Publication


Featured researches published by Timon Idema.


Current Biology | 2013

Heart-Specific Stiffening in Early Embryos Parallels Matrix and Myosin Expression to Optimize Beating

Stephanie Majkut; Timon Idema; Joe Swift; Christine Krieger; Andrea J. Liu; Dennis E. Discher

In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear whether or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable, while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2]. However, cell sensitivity to microenvironment elasticity is debated based in part on results from complex three-dimensional culture models [3]. Regenerative cardiology provides strong motivation to clarify any cell-level sensitivities to tissue elasticity because rigid postinfarct regions limit pumping by the adult heart [4]. Here, we focus on the spontaneously beating embryonic heart and sparsely cultured cardiomyocytes, including cells derived from pluripotent stem cells. Tissue elasticity, Et, increases daily for heart to 1-2 kPa by embryonic day 4 (E4), and although this is ~10-fold softer than adult heart, the beating contractions of E4 cardiomyocytes prove optimal at ~Et,E4 both in vivo and in vitro. Proteomics reveals daily increases in a small subset of proteins, namely collagen plus cardiac-specific excitation-contraction proteins. Rapid softening of the hearts matrix with collagenase or stiffening it with enzymatic crosslinking suppresses beating. Sparsely cultured E4 cardiomyocytes on collagen-coated gels likewise show maximal contraction on matrices with native E4 stiffness, highlighting cell-intrinsic mechanosensitivity. While an optimal elasticity for striation proves consistent with the mathematics of force-driven sarcomere registration, contraction wave speed is linear in Et as theorized for excitation-contraction coupled to matrix elasticity. Pluripotent stem cell-derived cardiomyocytes also prove to be mechanosensitive to matrix and thus generalize the main observation that myosin II organization and contractile function are optimally matched to the load contributed by matrix elasticity.


Physical Review Letters | 2008

Accurate Determination of Elastic Parameters for Multicomponent Membranes

Stefan Semrau; Timon Idema; Laurent Holtzer; Thomas Schmidt; Cornelis Storm

Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.


Biophysical Journal | 2009

Membrane-Mediated Interactions Measured Using Membrane Domains

Stefan Semrau; Timon Idema; Thomas Schmidt; Cornelis Storm

Cell membrane organization is the result of the collective effect of many driving forces. Several of these, such as electrostatic and van der Waals forces, have been identified and studied in detail. In this article, we investigate and quantify another force, the interaction between inclusions via deformations of the membrane shape. For electrically neutral systems, this interaction is the dominant organizing force. As a model system to study membrane-mediated interactions, we use phase-separated biomimetic vesicles that exhibit coexistence of liquid-ordered and liquid-disordered lipid domains. The membrane-mediated interactions between these domains lead to a rich variety of effects, including the creation of long-range order and the setting of a preferred domain size. Our findings also apply to the interaction of membrane protein patches, which induce similar membrane shape deformations and hence experience similar interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Bidirectional membrane tube dynamics driven by nonprocessive motors

Paige M. Shaklee; Timon Idema; Gerbrand Koster; Cornelis Storm; Thomas Schmidt; Marileen Dogterom

In cells, membrane tubes are extracted by molecular motors. Although individual motors cannot provide enough force to pull a tube, clusters of such motors can. Here,weinvestigate, using a minimal in vitro model system, how the tube pulling process depends on fundamental properties of the motor species involved. Previously, it has been shown that processive motors can pull tubes by dynamic association at the tube tip. We demonstrate that, remarkably, nonprocessive motors can also cooperatively extract tubes. Moreover, the tubes pulled by nonprocessive motors exhibit rich dynamics as compared to those pulled by their processive counterparts. We report distinct phases of persistent growth, retraction, and an intermediate regime characterized by highly dynamic switching between the two. We interpret the different phases in the context of a single-species model. The model assumes only a simple motor clustering mechanism along the length of the entire tube and the presence of a length-dependent tube tension. The resulting dynamic distribution of motor clusters acts as both a velocity and distance regulator for the tube. We show the switching phase to be an attractor of the dynamics of this model, suggesting that the switching observed experimentally is a robust characteristic of nonprocessive motors. A similar system could regulate in vivo biological membrane networks.


PLOS ONE | 2013

The Syncytial Drosophila Embryo as a Mechanically Excitable Medium

Timon Idema; Julien O. Dubuis; Louis Kang; M. Lisa Manning; Philip C Nelson; T. C. Lubensky; Andrea J. Liu

Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models. We find that the mitotic waves travel across the embryo at a well-defined speed that decreases with replication cycle. We find two markers of the wavefront in each cycle, corresponding to the onsets of metaphase and anaphase. Each of these onsets is followed by displacements of the nuclei that obey the same wavefront pattern. To understand the mitotic wavefronts theoretically we analyze wavefront propagation in excitable media. We study two classes of models, one with biochemical signaling and one with mechanical signaling. We find that the dependence of wavefront speed on cycle number is most naturally explained by mechanical signaling, and that the entire process suggests a scenario in which biochemical and mechanical signaling are coupled.


Scientific Reports | 2016

Lipid membrane-mediated attraction between curvature inducing objects.

Casper van der Wel; Afshin Vahid; An djela Šarić; Timon Idema; Doris Heinrich; Daniela J. Kraft

The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (−3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.


Biophysical Journal | 2010

A Reaction-Diffusion Model of the Cadherin-Catenin System: A Possible Mechanism for Contact Inhibition and Implications for Tumorigenesis

Markus Basan; Timon Idema; Martin Lenz; Jean-François Joanny; Thomas Risler

Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of cytoplasmic beta-catenin and alpha-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact the concentration in alpha-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, beta-catenin, and alpha-catenin in the cellular phenotype and in tumorigenesis. In particular, we address the effect of a knockout of the adenomatous polyposis coli tumor suppressor gene. Potential direct tests of our model are discussed.


eLife | 2017

Mechanical force induces mitochondrial fission

Sebastian Carsten Johannes Helle; Qian Feng; Mathias J. Aebersold; Luca Hirt; Raphael R. Grüter; Afshin Vahid; Andrea Sirianni; Serge Mostowy; Jess G. Snedeker; Anđela Šarić; Timon Idema; Tomaso Zambelli; Benoît Kornmann

Eukaryotic cells are densely packed with macromolecular complexes and intertwining organelles, continually transported and reshaped. Intriguingly, organelles avoid clashing and entangling with each other in such limited space. Mitochondria form extensive networks constantly remodeled by fission and fusion. Here, we show that mitochondrial fission is triggered by mechanical forces. Mechano-stimulation of mitochondria – via encounter with motile intracellular pathogens, via external pressure applied by an atomic force microscope, or via cell migration across uneven microsurfaces – results in the recruitment of the mitochondrial fission machinery, and subsequent division. We propose that MFF, owing to affinity for narrow mitochondria, acts as a membrane-bound force sensor to recruit the fission machinery to mechanically strained sites. Thus, mitochondria adapt to the environment by sensing and responding to biomechanical cues. Our findings that mechanical triggers can be coupled to biochemical responses in membrane dynamics may explain how organelles orderly cohabit in the crowded cytoplasm.


Physical Review E | 2014

Mechanical signaling via nonlinear wavefront propagation in a mechanically excitable medium.

Timon Idema; Andrea J. Liu

Models that invoke nonlinear wavefront propagation in a chemically excitable medium are rife in the biological literature. Indeed, the idea that wavefront propagation can serve as a signaling mechanism has often been invoked to explain synchronization of developmental processes. In this paper we suggest a kind of signaling based not on diffusion of a chemical species but on the propagation of mechanical stress. We construct a theoretical approach to describe mechanical signaling as a nonlinear wavefront propagation problem and study its dependence on key variables such as the effective elasticity and damping of the medium.


Physical Review E | 2015

Collective dynamics of soft active particles

Ruben van Drongelen; Anshuman Pal; Carl P. Goodrich; Timon Idema

We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states. Interestingly, although a migrating swarm moves slower than an individual particle, the diffusion constant can be up to three orders of magnitude larger, suggesting that collective motion can be highly advantageous, for example, when searching for food.

Collaboration


Dive into the Timon Idema's collaboration.

Top Co-Authors

Avatar

Cornelis Storm

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ruben van Drongelen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrea J. Liu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Afshin Vahid

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip C Nelson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anđela Šarić

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge