Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothee Cezard is active.

Publication


Featured researches published by Timothee Cezard.


Nature Methods | 2010

De novo assembly and analysis of RNA-seq data

Gordon Robertson; Jacqueline E. Schein; Readman Chiu; Richard Corbett; Matthew A. Field; Shaun D. Jackman; Karen Mungall; Sam Lee; Hisanaga Mark Okada; Jenny Q. Qian; Malachi Griffith; Anthony Raymond; Nina Thiessen; Timothee Cezard; Yaron S N Butterfield; Richard Newsome; Simon K. Chan; Rong She; Richard Varhol; Baljit Kamoh; Anna-Liisa Prabhu; Angela Tam; Yongjun Zhao; Richard A. Moore; Martin Hirst; Marco A. Marra; Steven J.M. Jones; Pamela A. Hoodless; Inanc Birol

We describe Trans-ABySS, a de novo short-read transcriptome assembly and analysis pipeline that addresses variation in local read densities by assembling read substrings with varying stringencies and then merging the resulting contigs before analysis. Analyzing 7.4 gigabases of 50-base-pair paired-end Illumina reads from an adult mouse liver poly(A) RNA library, we identified known, new and alternative structures in expressed transcripts, and achieved high sensitivity and specificity relative to reference-based assembly methods.


Molecular Ecology | 2013

Special features of RAD Sequencing data: implications for genotyping

John W. Davey; Timothee Cezard; Pablo Fuentes-Utrilla; Cathlene Eland; Karim Gharbi; Mark Blaxter

Restriction site‐associated DNA Sequencing (RAD‐Seq) is an economical and efficient method for SNP discovery and genotyping. As with other sequencing‐by‐synthesis methods, RAD‐Seq produces stochastic count data and requires sensitive analysis to develop or genotype markers accurately. We show that there are several sources of bias specific to RAD‐Seq that are not explicitly addressed by current genotyping tools, namely restriction fragment bias, restriction site heterozygosity and PCR GC content bias. We explore the performance of existing analysis tools given these biases and discuss approaches to limiting or handling biases in RAD‐Seq data. While these biases need to be taken seriously, we believe RAD loci affected by them can be excluded or processed with relative ease in most cases and that most RAD loci will be accurately genotyped by existing tools.


Genome Research | 2008

Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding

A. Gordon Robertson; Mikhail Bilenky; Angela Tam; Yongjun Zhao; Thomas Zeng; Nina Thiessen; Timothee Cezard; Anthony P. Fejes; Elizabeth D. Wederell; Rebecca Cullum; Ghia Euskirchen; Martin Krzywinski; Inanc Birol; Michael Snyder; Pamela A. Hoodless; Martin Hirst; Marco A. Marra; Steven J.M. Jones

We characterized the relationship of H3K4me1 and H3K4me3 at distal and proximal regulatory elements by comparing ChIP-seq profiles for these histone modifications and for two functionally different transcription factors: STAT1 in the immortalized HeLa S3 cell line, with and without interferon-gamma (IFNG) stimulation; and FOXA2 in mouse adult liver tissue. In unstimulated and stimulated HeLa cells, respectively, we determined approximately 270,000 and approximately 301,000 H3K4me1-enriched regions, and approximately 54,500 and approximately 76,100 H3K4me3-enriched regions. In mouse adult liver, we determined approximately 227,000 and approximately 34,800 H3K4me1 and H3K4me3 regions. Seventy-five percent of the approximately 70,300 STAT1 binding sites in stimulated HeLa cells and 87% of the approximately 11,000 FOXA2 sites in mouse liver were distal to known gene TSS; in both cell types, approximately 83% of these distal sites were associated with at least one of the two histone modifications, and H3K4me1 was associated with over 96% of marked distal sites. After filtering against predicted transcription start sites, 50% of approximately 26,800 marked distal IFNG-stimulated STAT1 binding sites, but 95% of approximately 5800 marked distal FOXA2 sites, were associated with H3K4me1 only. Results for HeLa cells generated additional insights into transcriptional regulation involving STAT1. STAT1 binding was associated with 25% of all H3K4me1 regions in stimulated HeLa cells, suggesting that a single transcription factor can interact with an unexpectedly large fraction of regulatory regions. Strikingly, for a large majority of the locations of stimulated STAT1 binding, the dominant H3K4me1/me3 combinations were established before activation, suggesting mechanisms independent of IFNG stimulation and high-affinity STAT1 binding.


Genome Biology | 2010

Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors.

Steven J.M. Jones; Janessa Laskin; Yvonne Y. Li; Obi L. Griffith; Jianghong An; Mikhail Bilenky; Yaron S N Butterfield; Timothee Cezard; Eric Chuah; Richard Corbett; Anthony P. Fejes; Malachi Griffith; John Yee; Montgomery Martin; Michael Mayo; Nataliya Melnyk; Ryan D. Morin; Trevor J. Pugh; Tesa Severson; Sohrab P. Shah; Margaret Sutcliffe; Angela Tam; Jefferson Terry; Nina Thiessen; Thomas A. Thomson; Richard Varhol; Thomas Zeng; Yongjun Zhao; Richard A. Moore; David Huntsman

BackgroundAdenocarcinomas of the tongue are rare and represent the minority (20 to 25%) of salivary gland tumors affecting the tongue. We investigated the utility of massively parallel sequencing to characterize an adenocarcinoma of the tongue, before and after treatment.ResultsIn the pre-treatment tumor we identified 7,629 genes within regions of copy number gain. There were 1,078 genes that exhibited increased expression relative to the blood and unrelated tumors and four genes contained somatic protein-coding mutations. Our analysis suggested the tumor cells were driven by the RET oncogene. Genes whose protein products are targeted by the RET inhibitors sunitinib and sorafenib correlated with being amplified and or highly expressed. Consistent with our observations, administration of sunitinib was associated with stable disease lasting 4 months, after which the lung lesions began to grow. Administration of sorafenib and sulindac provided disease stabilization for an additional 3 months after which the cancer progressed and new lesions appeared. A recurring metastasis possessed 7,288 genes within copy number amplicons, 385 genes exhibiting increased expression relative to other tumors and 9 new somatic protein coding mutations. The observed mutations and amplifications were consistent with therapeutic resistance arising through activation of the MAPK and AKT pathways.ConclusionsWe conclude that complete genomic characterization of a rare tumor has the potential to aid in clinical decision making and identifying therapeutic approaches where no established treatment protocols exist. These results also provide direct in vivo genomic evidence for mutational evolution within a tumor under drug selection and potential mechanisms of drug resistance accrual.


Molecular Ecology | 2013

The effect of RAD allele dropout on the estimation of genetic variation within and between populations

Mathieu Gautier; Karim Gharbi; Timothee Cezard; Julien Foucaud; Carole Kerdelhué; Pierre Pudlo; Jean-Marie Cornuet; Arnaud Estoup

Inexpensive short‐read sequencing technologies applied to reduced representation genomes is revolutionizing genetic research, especially population genetics analysis, by allowing the genotyping of massive numbers of single‐nucleotide polymorphisms (SNP) for large numbers of individuals and populations. Restriction site–associated DNA (RAD) sequencing is a recent technique based on the characterization of genomic regions flanking restriction sites. One of its potential drawbacks is the presence of polymorphism within the restriction site, which makes it impossible to observe the associated SNP allele (i.e. allele dropout, ADO). To investigate the effect of ADO on genetic variation estimated from RAD markers, we first mathematically derived measures of the effect of ADO on allele frequencies as a function of different parameters within a single population. We then used RAD data sets simulated using a coalescence model to investigate the magnitude of biases induced by ADO on the estimation of expected heterozygosity and FST under a simple demographic model of divergence between two populations. We found that ADO tends to overestimate genetic variation both within and between populations. Assuming a mutation rate per nucleotide between 10−9 and 10−8, this bias remained low for most studied combinations of divergence time and effective population size, except for large effective population sizes. Averaging FST values over multiple SNPs, for example, by sliding window analysis, did not correct ADO biases. We briefly discuss possible solutions to filter the most problematic cases of ADO using read coverage to detect markers with a large excess of null alleles.


Blood | 2012

Identification and characterization of Hoxa9 binding sites in hematopoietic cells

Yongsheng Huang; Kajal Sitwala; Joel Bronstein; Daniel S. Sanders; Monisha Dandekar; Cailin Collins; Gordon Robertson; James W. MacDonald; Timothee Cezard; Misha Bilenky; Nina Thiessen; Yongjun Zhao; Thomas Zeng; Martin Hirst; Alfred O. Hero; Steven J.M. Jones; Jay L. Hess

The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.


Molecular Ecology | 2013

Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping

Mathieu Gautier; Julien Foucaud; Karim Gharbi; Timothee Cezard; Maxime Galan; Anne Loiseau; Marian Thomson; Pierre Pudlo; Carole Kerdelhué; Arnaud Estoup

Molecular markers produced by next‐generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual‐based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user‐friendly application assessing the accuracy of allele frequency estimation from both pool‐ and individual‐based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site–associated DNA (RAD) sequencing in pool‐ and individual‐based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost‐effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome‐wide patterns of genetic variation for large numbers of individuals in multiple populations.


Molecular Ecology Resources | 2011

SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing

Armando Geraldes; Johnson Pang; Nina Thiessen; Timothee Cezard; Richard G. Moore; Yongjun Zhao; Angela Tam; Shucai Wang; Michael Friedmann; Inanc Birol; Steven J.M. Jones; Quentin C. B. Cronk; Carl J. Douglas

The western black cottonwood (Populus trichocarpa) was the first tree to have its genome fully sequenced and has emerged as the model species for the study of secondary growth and wood formation. It is also a good candidate species for the production of lignocellulosic biofuels. Here, we present and make available to the research community the results of the sequencing of the transcriptome of developing xylem in 20 accessions with high‐throughput next generation sequencing technology. We found over 0.5 million putative single nucleotide polymorphisms (SNPs) in 26 595 genes that are expressed in developing secondary xylem. More than two‐thirds of all SNPs were found in annotated exons, with 18% and 14% in regions of the genome annotated as introns and intergenic, respectively, where only 3% and 4% of sequence reads mapped. This suggests that the current annotation of the poplar genome is remarkably incomplete and that there are many transcripts and novel genes waiting to be annotated. We hope that this resource will stimulate further research in expression profiling, detection of alternative splicing and adaptive evolution in poplar.


Genome Research | 2010

Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver

Brad G. Hoffman; Gordon Robertson; Bogard Zavaglia; Mike Beach; Rebecca Cullum; Sam Lee; Galina Soukhatcheva; Leping Li; Elizabeth D. Wederell; Nina Thiessen; Mikhail Bilenky; Timothee Cezard; Angela Tam; Baljit Kamoh; Inanc Birol; Derek L. Dai; Yongjun Zhao; Martin Hirst; C. Bruce Verchere; Cheryl D. Helgason; Marco A. Marra; Steven J.M. Jones; Pamela A. Hoodless

The liver and pancreas share a common origin and coexpress several transcription factors. To gain insight into the transcriptional networks regulating the function of these tissues, we globally identify binding sites for FOXA2 in adult mouse islets and liver, PDX1 in islets, and HNF4A in liver. Because most eukaryotic transcription factors bind thousands of loci, many of which are thought to be inactive, methods that can discriminate functionally active binding events are essential for the interpretation of genome-wide transcription factor binding data. To develop such a method, we also generated genome-wide H3K4me1 and H3K4me3 localization data in these tissues. By analyzing our binding and histone methylation data in combination with comprehensive gene expression data, we show that H3K4me1 enrichment profiles discriminate transcription factor occupied loci into three classes: those that are functionally active, those that are poised for activation, and those that reflect pioneer-like transcription factor activity. Furthermore, we demonstrate that the regulated presence of H3K4me1-marked nucleosomes at transcription factor occupied promoters and enhancers controls their activity, implicating both tissue-specific transcription factor binding and nucleosome remodeling complex recruitment in determining tissue-specific gene expression. Finally, we apply these approaches to generate novel insights into how FOXA2, PDX1, and HNF4A cooperate to drive islet- and liver-specific gene expression.


Current Biology | 2014

Rapid Convergent Evolution in Wild Crickets

Sonia Pascoal; Timothee Cezard; Aasta Eik-Nes; Karim Gharbi; Jagoda Majewska; Elizabeth Payne; Michael G. Ritchie; Marlene Zuk; Nathan W. Bailey

The earliest stages of convergent evolution are difficult to observe in the wild, limiting our understanding of the incipient genomic architecture underlying convergent phenotypes. To address this, we capitalized on a novel trait, flatwing, that arose and proliferated at the start of the 21st century in a population of field crickets (Teleogryllus oceanicus) on the Hawaiian island of Kauai. Flatwing erases sound-producing structures on male forewings. Mutant males cannot sing to attract females, but they are protected from fatal attack by an acoustically orienting parasitoid fly (Ormia ochracea). Two years later, the silent morph appeared on the neighboring island of Oahu. We tested two hypotheses for the evolutionary origin of flatwings in Hawaii: (1) that the silent morph originated on Kauai and subsequently introgressed into Oahu and (2) that flatwing originated independently on each island. Morphometric analysis of male wings revealed that Kauai flatwings almost completely lack typical derived structures, whereas Oahu flatwings retain noticeably more wild-type wing venation. Using standard genetic crosses, we confirmed that the mutation segregates as a single-locus, sex-linked Mendelian trait on both islands. However, genome-wide scans using RAD-seq recovered almost completely distinct markers linked with flatwing on each island. The patterns of allelic association with flatwing on either island reveal different genomic architectures consistent with the timing of two mutational events on the X chromosome. Divergent wing morphologies linked to different loci thus cause identical behavioral outcomes--silence--illustrating the power of selection to rapidly shape convergent adaptations from distinct genomic starting points.

Collaboration


Dive into the Timothee Cezard's collaboration.

Top Co-Authors

Avatar

Karim Gharbi

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Nina Thiessen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Steven J.M. Jones

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Tam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Martin Hirst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Inanc Birol

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marco A. Marra

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Varhol

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge