Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy A. Hill is active.

Publication


Featured researches published by Timothy A. Hill.


Journal of Medicinal Chemistry | 2015

Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists.

Huy N. Hoang; K Song; Timothy A. Hill; David R. Derksen; David J. Edmonds; W.M. Kok; Chris Limberakis; Spiros Liras; Paula M. Loria; Mascitti; Alan M. Mathiowetz; Justin M. Mitchell; David W. Piotrowski; David A. Price; Robert Vernon Stanton; Jacky Y. Suen; Jane M. Withka; David A. Griffith; David P. Fairlie

Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency. These structures can inform development of small molecule agonists of the GLP-1 receptor to treat type 2 diabetes.


Angewandte Chemie | 2014

Constraining cyclic peptides to mimic protein structure motifs.

Timothy A. Hill; Nicholas E. Shepherd; Frederik Diness; David P. Fairlie

Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency

Rosemary S. Harrison; Nicholas E. Shepherd; Huy N. Hoang; Gloria Ruiz-Gómez; Timothy A. Hill; Russell W. Driver; Vishal S. Desai; Paul R. Young; Giovanni Abbenante; David P. Fairlie

Recombinant proteins are important therapeutics due to potent, highly specific, and nontoxic actions in vivo. However, they are expensive medicines to manufacture, chemically unstable, and difficult to administer with low patient uptake and compliance. Small molecule drugs are cheaper and more bioavailable, but less target-specific in vivo and often have associated side effects. Here we combine some advantages of proteins and small molecules by taking short amino acid sequences that confer potency and selectivity to proteins, and fixing them as small constrained molecules that are chemically and structurally stable and easy to make. Proteins often use short α-helices of just 1–4 helical turns (4–15 amino acids) to interact with biological targets, but peptides this short usually have negligible α-helicity in water. Here we show that short peptides, corresponding to helical epitopes from viral, bacterial, or human proteins, can be strategically fixed in highly α-helical structures in water. These helix-constrained compounds have similar biological potencies as proteins that bear the same helical sequences. Examples are (i) a picomolar inhibitor of Respiratory Syncytial Virus F protein mediated fusion with host cells, (ii) a nanomolar inhibitor of RNA binding to the transporter protein HIV-Rev, (iii) a submicromolar inhibitor of Streptococcus pneumoniae growth induced by quorum sensing pheromone Competence Stimulating Peptide, and (iv) a picomolar agonist of the GPCR pain receptor opioid receptor like receptor ORL-1. This approach can be generally applicable to downsizing helical regions of proteins with broad applications to biology and medicine.


Journal of Medicinal Chemistry | 2009

Inhibition of dynamin mediated endocytosis by the dynoles: synthesis and functional activity of a family of indoles

Timothy A. Hill; Christopher P. Gordon; Andrew B. McGeachie; Barbara Venn-Brown; Luke R. Odell; Ngoc Chau; Annie Quan; Anna Mariana; Jennette A. Sakoff; Megan Chircop; Phillip J. Robinson; Adam McCluskey

Screening identified two bisindolylmaleimides as 100 microM inhibitors of the GTPase activity of dynamin I. Focused library approaches allowed development of indole-based dynamin inhibitors called dynoles. 100-Fold in vitro enhancement of potency was noted with the best inhibitor, 2-cyano-3-(1-(2-(dimethylamino)ethyl)-1H-indol-3-yl)-N-octylacrylamide (dynole 34-2), a 1.3 +/- 0.3 microM dynamin I inhibitor. Dynole 34-2 potently inhibited receptor mediated endocytosis (RME) internalization of Texas red-transferrin. The rank order of potency for a variety of dynole analogues on RME in U2OS cells matched their rank order for dynamin inhibition, suggesting that the mechanism of inhibition is via dynamin. Dynoles are the most active dynamin I inhibitors reported for in vitro or RME evaluations. Dynole 34-2 is 15-fold more active than dynasore against dynamin I and 6-fold more active against dynamin mediated RME (IC(50) approximately 15 microM; RME IC(50) approximately 80 microM). The dynoles represent a new series of tools to better probe endocytosis and dynamin-mediated trafficking events in a variety of cells.


Chemical Reviews | 2010

Update 1 of: Beta-Strand Mimetics

Wendy Anne Loughlin; Joel D. A. Tyndall; Matthew P. Glenn; Timothy A. Hill; David P. Fairlie

Small molecules that mimic β-strands can be very useful enzyme inhibitors and antagonists with important potential applications in medicine. It is only in the last 10 years or so that small molecule β-strand mimetics have been reported. In addition to such specific recognition of discrete β-strands, combinations of two or more strands to form β-sheets not only act as important scaffolding elements to stabilize protein structure but are sometimes key recognition motifs that bind to other proteins or DNA.


Angewandte Chemie | 2014

Comparative α-Helicity of Cyclic Pentapeptides in Water†

Aline Dantas de Araujo; Huy N. Hoang; W. Mei Kok; Frederik Diness; Praveer Gupta; Timothy A. Hill; Russell W. Driver; David A. Price; Spiros Liras; David P. Fairlie

Helix-constrained polypeptides have attracted great interest for modulating protein-protein interactions (PPI). It is not known which are the most effective helix-inducing strategies for designing PPI agonists/antagonists. Cyclization linkers (X1-X5) were compared here, using circular dichroism and 2D NMR spectroscopy, for α-helix induction in simple model pentapeptides, Ac-cyclo(1,5)-[X1-Ala-Ala-Ala-X5]-NH2, in water. In this very stringent test of helix induction, a Lys1→Asp5 lactam linker conferred greatest α-helicity, hydrocarbon and triazole linkers induced a mix of α- and 3₁₀-helicity, while thio- and dithioether linkers produced less helicity. The lactam-linked cyclic pentapeptide was also the most effective α-helix nucleator attached to a 13-residue model peptide.


Angewandte Chemie | 2014

Improving on Nature: Making a Cyclic Heptapeptide Orally Bioavailable†

Daniel S. Nielsen; Huy N. Hoang; Rink-Jan Lohman; Timothy A. Hill; Andrew J. Lucke; David J. Craik; David J. Edmonds; David A. Griffith; Charles J. Rotter; Roger Benjamin Ruggeri; David A. Price; Spiros Liras; David P. Fairlie

The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we investigate effects of heterocyclic constraints, intramolecular hydrogen bonds, and side chains on the oral bioavailability of cyclic heptapeptides. NMR-derived structures, amide H-D exchange rates, and temperature-dependent chemical shifts showed that the combination of rigidification, stronger hydrogen bonds, and solvent shielding by branched side chains enhances the oral bioavailability of cyclic heptapeptides in rats without the need for N-methylation.


Cancer Research | 2013

A Novel Class of Anticancer Compounds Targets the Actin Cytoskeleton in Tumor Cells

Justine R. Stehn; Nikolas K. Haass; Teresa Bonello; Melissa Desouza; Gregg Kottyan; Herbert Treutlein; Jun Zeng; P. R. Nascimento; Vanessa B. Sequeira; Tanya L. Butler; Munif Allanson; Thomas Fath; Timothy A. Hill; Adam McCluskey; Galina Schevzov; Stephen J. Palmer; Edna C. Hardeman; David S. Winlaw; Vivienne E. Reeve; Ian Dixon; Wolfgang Weninger; Timothy P. Cripe; Peter Gunning

The actin cytoskeleton is a potentially vulnerable property of cancer cells, yet chemotherapeutic targeting attempts have been hampered by unacceptable toxicity. In this study, we have shown that it is possible to disrupt specific actin filament populations by targeting isoforms of tropomyosin, a core component of actin filaments, that are selectively upregulated in cancers. A novel class of anti-tropomyosin compounds has been developed that preferentially disrupts the actin cytoskeleton of tumor cells, impairing both tumor cell motility and viability. Our lead compound, TR100, is effective in vitro and in vivo in reducing tumor cell growth in neuroblastoma and melanoma models. Importantly, TR100 shows no adverse impact on cardiac structure and function, which is the major side effect of current anti-actin drugs. This proof-of-principle study shows that it is possible to target specific actin filament populations fundamental to tumor cell viability based on their tropomyosin isoform composition. This improvement in specificity provides a pathway to the development of a novel class of anti-actin compounds for the potential treatment of a wide variety of cancers.


Tetrahedron Letters | 2002

Green chemistry approaches to the Knoevenagel condensation: comparison of ethanol, water and solvent free (dry grind) approaches

Adam McCluskey; Philip J. Robinson; Timothy A. Hill; Janet L. Scott; J. Kate Edwards

We report a comparative study of the Knoevenagel condensation with a variety of substituted benzaldehydes (17 examples) and cyanoamides (3 examples), using three different methodologies: (a) traditional ethanol reflux; (b) water reflux; and (c) solvent free conditions. Almost without exception these reactions proceeded faster, more cleanly and in higher yields when the reactions were conducted in a solvent-free fashion. Additionally, our solvent free approach allowed the use of nitrobenzaldehydes, which failed to yield the desired products under traditional and water based approaches.


ChemMedChem | 2008

Norcantharidin analogues: Synthesis, anticancer activity and protein phosphatase 1 and 2A inhibition

Timothy A. Hill; Scott G. Stewart; Christopher P. Gordon; Stephen P. Ackland; Jayne Gilbert; Benjamin Sauer; Jennette A. Sakoff; Adam McCluskey

Cantharidin (1) and its derivatives are of significant interest as serine/threonine protein phosphatase 1 and 2A inhibitors. Additionally, compounds of this type have displayed growth inhibition of various tumour cell lines. To further explore both of these inhibition pathways, a number of amide–acid norcantharidin analogues (15–26) were prepared. Compounds 23 and 24, containing two carboxylic acid residues, showed good PP1 and PP2A activity, with IC50 values of ∼15 and ∼3 μm, respectively. Substituted aromatic amide analogues 45, 48, 49, 52, 53, and 54 also displayed good PP1 and PP2A inhibition, with IC50 values in the range of 15–10 μM (PP1) and 11–5 μM (PP2A). However, bulky ortho substituents on the aromatic ring caused the aromatic ring to be skewed from the NCO planarity, leading to a decrease in PP1 and PP2A inhibition. A number of analogues, 20, 22, 25 and 46, showed excellent tumour growth inhibition, with 46 in particular being more potent than the lead, norcantharidin 2.

Collaboration


Dive into the Timothy A. Hill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huy N. Hoang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennette A. Sakoff

Mater Misericordiae Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott G. Stewart

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge