Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy C. Beers is active.

Publication


Featured researches published by Timothy C. Beers.


The Astronomical Journal | 1990

Measures of location and scale for velocities in clusters of galaxies. A robust approach

Timothy C. Beers; Kevin Flynn; Karl Gebhardt

The novel estimators proposed for the kinematical properties of clusters of galaxies are both resistant in the presence of outliers and robust for a broad range of non-Gaussian underlying populations. Extensive simulations for a number of common situations realizable in small-to-large samples of cluster radial velocities allow the identification of minimum variance estimators. Also explored is the estimation of confidence intervals, using the jacknife and bootstrap resampling techniques. These methods are compared to simple formulas based on sample estimates of central location and scale. Estimators of confidence intervals on scale require resampling. 61 refs.


The Astrophysical Journal | 2007

Cats and Dogs, Hair and a Hero: A Quintet of New Milky Way Companions*

Vasily Belokurov; Daniel B. Zucker; N. W. Evans; Jan Kleyna; S. E. Koposov; Simon T. Hodgkin; M. J. Irwin; G. Gilmore; M. I. Wilkinson; M. Fellhauer; D. M. Bramich; Paul C. Hewett; S. Vidrih; J. T. A. de Jong; J. A. Smith; H.-W. Rix; Eric F. Bell; R. F. G. Wyse; Heidi Jo Newberg; P. A. Mayeur; Brian Yanny; Constance M. Rockosi; Oleg Y. Gnedin; Donald P. Schneider; Timothy C. Beers; John C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; Scott J. Kleinman

We present five new satellites of the Milky Way discovered in Sloan Digital Sky Survey (SDSS) imaging data, four of which were followed-up with either the Subaru or the Isaac Newton Telescopes. They include four probable new dwarf galaxies--one each in the constellations of Coma Berenices, Canes Venatici, Leo and Hercules--together with one unusually extended globular cluster, Segue 1. We provide distances, absolute magnitudes, half-light radii and color-magnitude diagrams for all five satellites. The morphological features of the color-magnitude diagrams are generally well described by the ridge line of the old, metal-poor globular cluster M92. In the last two years, a total of ten new Milky Way satellites with effective surface brightness {mu}{sub v} {approx}> 28 mag arcsec{sup -2} have been discovered in SDSS data. They are less luminous, more irregular and appear to be more metal-poor than the previously-known nine Milky Way dwarf spheroidals. The relationship between these objects and other populations is discussed. We note that there is a paucity of objects with half-light radii between {approx} 40 pc and {approx} 100 pc. We conjecture that this may represent the division between star clusters and dwarf galaxies.


The Astrophysical Journal | 2008

THE MILKY WAY'S CIRCULAR VELOCITY CURVE TO 60 kpc AND AN ESTIMATE OF THE DARK MATTER HALO MASS FROM THE KINEMATICS OF ∼2400 SDSS BLUE HORIZONTAL-BRANCH STARS

X. X. Xue; H.-W. Rix; Gang Zhao; P. Re Fiorentin; Thorsten Naab; Matthias Steinmetz; F. C. van den Bosch; Timothy C. Beers; Young Sun Lee; Eric F. Bell; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Ronald Wilhelm; Xi Kang; M. C. Smith; Donald P. Schneider

We derive new constraints on the mass of the Milky Ways dark matter halo, based on 2401 rigorously selected blue horizontal-branch halo stars from SDSS DR6. This sample enables construction of the full line-of-sight velocity distribution at different galactocentric radii. To interpret these distributions, we compare them to matched mock observations drawn from two different cosmological galaxy formation simulations designed to resemble the Milky Way. This procedure results in an estimate of the Milky Ways circular velocity curve to ~60 kpc, which is found to be slightly falling from the adopted value of 220 km s?1 at the Suns location, and implies -->M( Vcir(r) , derived in statistically independent bins, is found to be consistent with the expectations from an NFW dark matter halo with the established stellar mass components at its center. If we assume that an NFW halo profile of characteristic concentration holds, we can use the observations to estimate the virial mass of the Milky Ways dark matter halo, -->Mvir = 1.0+ 0.3?0.2 ? 1012 M?, which is lower than many previous estimates. We have checked that the particulars of the cosmological simulations are unlikely to introduce systematics larger than the statistical uncertainties. This estimate implies that nearly 40% of the baryons within the virial radius of the Milky Ways dark matter halo reside in the stellar components of our Galaxy. A value for -->Mvir of only ~ -->1 ? 1012 M? also (re)opens the question of whether all of the Milky Ways satellite galaxies are on bound orbits.


The Astrophysical Journal | 2006

The Field of Streams: Sagittarius and Its Siblings

Vasily Belokurov; Daniel B. Zucker; N. W. Evans; G. Gilmore; S. Vidrih; D. M. Bramich; Heidi Jo Newberg; R. F. G. Wyse; M. J. Irwin; M. Fellhauer; Paul C. Hewett; Nicholas A. Walton; M. I. Wilkinson; Nathan Cole; Brian Yanny; Constance M. Rockosi; Timothy C. Beers; Eric F. Bell; J. Brinkmann; Željko Ivezić; Robert H. Lupton

We use Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) u, g, r, i, z photometry to study Milky Way halo substructure in the area around the north Galactic cap. A simple color cut (g - r < 0.4) reveals the tidal stream of the Sagittarius dwarf spheroidal galaxy, as well as a number of other stellar structures in the field. Two branches (A and B) of the Sagittarius stream are clearly visible in an RGB composite image created from three magnitude slices, and there is also evidence for a still more distant wrap behind the A branch. A comparison of these data with numerical models suggests that the shape of the Galactic dark halo is close to spherical.


The Astrophysical Journal | 1996

Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy*

Sean G. Ryan; John E. Norris; Timothy C. Beers

We have obtained high-resolution spectra of 23 very metal-poor stars and present an abundance analysis for 19 of these for elements between Mg and Eu. The sample comprises roughly equal numbers of dwarfs and giants. All stars have [Fe/H] 0 deserve further study. CS 22897–008 has high Sr, Y, and C abundances for its [Fe/H] but normal Ba. This signature may have arisen from the weak s-process in M > 15 M stars or by r-processing. By combining an analytic description of gaseous supernova remnants with supernova yields, we show that enrichment of the interstellar medium is influenced more by supernova physics (explosive energy) than by environmental conditions (cloud density). If supernova iron-peak yields are correlated with explosion energy, we can accommodate the well-defined abundance trends with a chaotic picture for halo formation involving independently evolving clouds, as was envisaged by Searle & Zinn. We calculate that a typical enrichment in the protohalo will produce [Fe/H] = −2.7. This coincides with larger abundance variations in field stars of lower metallicity and the lower abundance limit for Galactic globular clusters.


The Astrophysical Journal | 2008

The Milky Way Tomography with SDSS. II. Stellar Metallicity

Željko Ivezić; Branimir Sesar; Mario Juric; Nicholas A. Bond; Julianne J. Dalcanton; Constance M. Rockosi; Brian Yanny; Heidi Jo Newberg; Timothy C. Beers; Carlos Allende Prieto; Ron Wilhelm; Young Sun Lee; Thirupathi Sivarani; John E. Norris; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; David J. Schlegel; Alan Uomoto; Robert H. Lupton; Gillian R. Knapp; James E. Gunn; Kevin R. Covey; Gajus A. Miknaitis; Mamoru Doi; M. Tanaka; Masataka Fukugita; Steve Kent; Douglas P. Finkbeiner; Jeffrey A. Munn; Jeffrey R. Pier

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is producing a massive spectroscopic database which already contains over 280,000 stellar spectra. Using eectiv e temperature and metallicity derived from SDSS spectra for 60,000 F and G type main sequence stars (0:2 < g r < 0:6), we develop polynomial models, reminiscent of traditional methods based on the UBV photometry, for estimating these parameters from the SDSS u g and g r colors. These estimators reproduce SDSS spectroscopic parameters with a root-mean-square scatter of 100 K for eectiv e temperature, and 0.2 dex for metallicity (limited by photometric errors), which are similar to random and systematic uncertainties in spectroscopic determinations. We apply this method to a photometric catalog of coadded SDSS observations and study the photometric metallicity distribution of 200,000 F and G type stars observed in 300 deg 2 of high Galactic latitude sky. These deeper (g < 20:5) and photometrically precise ( 0.01 mag) coadded data enable an accurate measurement of the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, that correspond to disk and halo. The best-t number ratio of the two components is consistent with that implied by the decomposition of stellar counts proles into exponential disk and power-law halo components by Juri c et al. (2008). The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component can be modeled as a spatially invariant Gaussian distribution with a mean of [F e=H] = 1:46 and a standard deviation of 0.3 dex. The disk metallicity distribution is non-Gaussian, with a remarkably small scatter (rms 0.16 dex) and the median smoothly decreasing with distance from the plane from 0:6 at 500 pc to 0:8 beyond several kpc. Similarly, we nd using proper motion measurements that a nonGaussian rotational velocity distribution of disk stars shifts by 50 km/s as the distance from the plane increases from 500 pc to several kpc. Despite this similarity, the metallicity and rotational velocity distributions of disk stars are not correlated (Kendall’s = 0:017 0:018). This absence of a correlation between metallicity and kinematics for disk stars is in a conict with the traditional decomposition in terms of thin and thick disks, which predicts a strong correlation ( = 0:30 0:04) at 1 kpc from the mid-plane. Instead, the variation of the metallicity and rotational velocity distributions can be modeled using non-Gaussian functions that retain their shapes and only shift as the distance from the mid-plane increases. We also study the metallicity distribution using a shallower (g < 19:5) but much larger sample of close to three million stars in 8500 sq. deg. of sky included in SDSS Data Release 6. The large sky coverage enables the detection of coherent substructures in the kinematics{ metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [F e=H] = 0:95, with an rms scatter of only 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper motion measurements accurate to 0.2-0.5 mas/yr, for about 200 million F/G dwarf stars within a distance limit of 100 kpc (g < 23:5). Subject headings: methods: data analysis | stars: statistics | Galaxy: halo, kinematics and dynamics, stellar content, structure


Nature | 2007

Two stellar components in the halo of the Milky Way

Daniela Carollo; Timothy C. Beers; Young Sun Lee; Masashi Chiba; John E. Norris; Ronald Wilhelm; Thirupathi Sivarani; Brian Elliott Marsteller; Jeffrey A. Munn; Coryn A. L. Bailer-Jones; Paola Re Fiorentin; Donald G. York

The halo of the Milky Way provides unique elemental abundance and kinematic information on the first objects to form in the Universe, and this information can be used to tightly constrain models of galaxy formation and evolution. Although the halo was once considered a single component, evidence for its dichotomy has slowly emerged in recent years from inspection of small samples of halo objects. Here we show that the halo is indeed clearly divisible into two broadly overlapping structural components—an inner and an outer halo—that exhibit different spatial density profiles, stellar orbits and stellar metallicities (abundances of elements heavier than helium). The inner halo has a modest net prograde rotation, whereas the outer halo exhibits a net retrograde rotation and a peak metallicity one-third that of the inner halo. These properties indicate that the individual halo components probably formed in fundamentally different ways, through successive dissipational (inner) and dissipationless (outer) mergers and tidal disruption of proto-Galactic clumps.


Nature | 2005

Nucleosynthetic signatures of the first stars

Anna Frebel; Wako Aoki; Norbert Christlieb; Hiroyasu Ando; Martin Asplund; Paul Barklem; Timothy C. Beers; Kjell Eriksson; C. Fechner; Masayuki Y. Fujimoto; Satoshi Honda; Toshitaka Kajino; Takeo Minezaki; K. Nomoto; John E. Norris; Sean G. Ryan; Masahide Takada-Hidai; Stelios Tsangarides; Yuzuru Yoshii

The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium present within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models have been suggested to explain the origin of the abundance pattern of the giant star HE0107–5240, which hitherto exhibited the highest deficiency of heavy elements known. Here we report the discovery of HE1327–2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107–5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE1327–2326, however, challenge existing theoretical understanding: no model predicts the high Sr abundance or provides a Li depletion mechanism consistent with data available for the most metal-poor stars.


The Astrophysical Journal | 2003

The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis*

Christopher Sneden; John J. Cowan; James E. Lawler; Inese I. Ivans; Scott Burles; Timothy C. Beers; F. Primas; V. Hill; James W. Truran; George M. Fuller; B. Pfeiffer; Karl-Ludwig Kratz

High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron capture elements. A revised model stellar atmosphere has been derived with the aid of a large number of Fe peak transitions, including both neutral and ionized species of six elements. Several elements, including Mo, Lu, Au, Pt, and Pb, have been detected for the first time in CS 22892-052, and significant upper limits have been placed on the abundances of Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper limits have been determined for 57 elements, far more than previously possible. New Be and Li detections in CS 22892-052 indicate that the abundances of both these elements are significantly depleted compared to unevolved main-sequence turnoff stars of similar metallicity. Abundance comparisons show an excellent agreement between the heaviest n-capture elements (Z ≥ 56) and scaled solar system r-process abundances, confirming earlier results for CS 22892-052 and other metal-poor stars. New theoretical r-process calculations also show good agreement with CS 22892-052 abundances and the solar r-process abundance components. The abundances of lighter elements (40 ≤ Z ≤ 50), however, deviate from the same scaled abundance curves that match the heavier elements, suggesting different synthesis conditions or sites for the low-mass and high-mass ends of the abundance distribution. The detection of Th and the upper limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8± 3 Gyr. An average of several chronometric ratios yields an age 14.2± 3 Gyr.


The Astronomical Journal | 2000

Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars

Masashi Chiba; Timothy C. Beers

We present a detailed analysis of the space motions of 1203 solar-neighborhood stars with metal abundances [Fe/H] ≤ -0.6, on the basis of a catalog, of metal-poor stars selected without kinematic bias recently revised and supplemented by Beers et al. This sample, having available proper motions, radial velocities, and distance estimates for stars with a wide range of metal abundances, is by far the largest such catalog to be assembled to date. We show that the stars in our sample with [Fe/H] ≤-2.2, which likely represent a pure halo component, are characterized by a radially elongated velocity ellipsoid (σU, σV, σW) = (141 ± 11, 106 ± 9, 94 ± 8) km s-1 and small prograde rotation V = 30 to 50 km s-1, consistent with previous analysis of this sample by Beers and Sommer-Larsen based on radial velocity information alone. In contrast to the previous analysis, we find a decrease in V with increasing distance from the Galactic plane for stars that are likely to be members of the halo population (ΔV/Δ|Z| = -52 ± 6 km s-1 kpc-1), which may represent the signature of a dissipatively formed flattened inner halo. Unlike essentially all previous kinematically selected catalogs, the metal-poor stars in our sample exhibit a diverse distribution of orbital eccentricities, e, with no apparent correlation between [Fe/H] and e. This demonstrates, clearly and convincingly, that the evidence offered in 1962 by Eggen, Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, an apparent correlation between the orbital eccentricity of halo stars with metallicity, is basically the result of their proper-motion selection bias. However, even in our nonkinematically selected sample, we have identified a small concentration of high-e stars at [Fe/H] ~ -1.7, which may originate, in part, from infalling gas during the early formation of the Galaxy. We find no evidence for an additional thick disk component for stellar abundances [Fe/H] ≤ -2.2. The kinematics of the intermediate-abundance stars close to the Galactic plane are, in part, affected by the presence of a rapidly rotating thick disk component with V 200 km s-1 (with a vertical velocity gradient on the order of ΔV/Δ|Z| = -30 ± 3 km s-1 kpc-1) and velocity ellipsoid (σU, σV, σW) = (46 ± 4, 50 ± 4, 35 ± 3) km s-1. The fraction of low-metallicity stars in the solar neighborhood that are members of the thick disk population is estimated as ~10% for -2.2 < [Fe/H] ≤ -1.7 and ~30% for -1.7 < [Fe/H] ≤ -1. We obtain an estimate of the radial scale length of the metal-weak thick disk of 4.5 ± 0.6 kpc. We also analyze the global kinematics of the stars constituting the halo component of the Galaxy. The outer part of the halo, which we take to be represented by local stars on orbits reaching more than 5 kpc from the Galactic plane, exhibits no systematic rotation. In particular, we show that previous suggestions of the presence of a counter-rotating high halo are not supported by our analysis. The density distribution of the outer halo is nearly spherical and exhibits a power-law profile that is accurately described as ρ ∝ R-3.55±0.13. The inner part of the halo is characterized by a prograde rotation and a highly flattened density distribution. We find no distinct boundary between the inner and outer halo. We confirm the clumping in angular-momentum phase space of a small number of local metal-poor stars noted in 1999 by Helmi et al. We also identify an additional elongated feature in angular-momentum phase space extending from the clump to regions with high azimuthal rotation. The number of members in the detected clump is not significantly increased from that reported by Helmi et al., even though the total number of the sample stars we consider is almost triple that of the previous investigation. We conclude that the fraction of halo stars that may have arisen from the precursor object of this clump may be smaller than 10% of the present Galactic halo, as previously suggested. The implications of our results for the formation of the Galaxy are discussed, in particular in the context of the currently favored cold dark matter theory of hierarchical galaxy formation.

Collaboration


Dive into the Timothy C. Beers's collaboration.

Top Co-Authors

Avatar

Young Sun Lee

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

John E. Norris

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Carlos Allende Prieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Wako Aoki

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean G. Ryan

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Hill

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Thirupathi Sivarani

Indian Institute of Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Christopher Sneden

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge