Timothy C. Berto
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy C. Berto.
Journal of the American Chemical Society | 2008
V. K. K. Praneeth; Florian Paulat; Timothy C. Berto; Serena DeBeer George; Christian Näther; Corinne D. Sulok; Nicolai Lehnert
This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO(+) ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/A, respectively. This is related to two strong pi back-bonds between Fe(II) and NO(+). The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only approximately 1-3 kcal/mol above the Fe(II)-NO(+) ground state. In addition, the Fe(II)-NO(+) potential energy surface (PES) crosses the low-spin Fe(III)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 A) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO(+) state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/A, respectively. The PES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal(III) nitrosyls in general.
Journal of the American Chemical Society | 2011
Timothy C. Berto; Melissa B. Hoffman; Yuki Murata; Kira B. Landenberger; E. Ercan Alp; Jiyong Zhao; Nicolai Lehnert
The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) has gained much attention as this reaction provides a paradigm as to how NO can be detoxified anaerobically in cells. However, a clear mechanistic picture of how the heme/non-heme active site of NorBC activates NO is lacking, mostly as a result of insufficient knowledge about the properties of the non-heme iron(II)-NO adduct. Here we report the first biomimetic model complexes for this species that closely resemble the coordination environment found in the protein, using the ligands BMPA-Pr and TPA. The systematic investigation of these compounds allowed us to gain key insight into the electronic structure and geometric properties of high-spin non-heme iron(II)-NO adducts. In particular, we show how small changes in the ligand environment of iron could be used by NorBC to greatly modulate the properties, and hence, the reactivity of this species.
Journal of the American Chemical Society | 2009
Timothy C. Berto; V. K. K. Praneeth; Lauren E. Goodrich; Nicolai Lehnert
A series of substituted tetraphenylporphyrin type macrocycles (TMP or To-F(2)PP) with covalently attached N-donor ligands (pyridine or imidazole linker) have been synthesized. Linkers with varying chain lengths and designs have been applied to systematically investigate the effect of chain length and rigidity on the binding affinity of the linker to the corresponding Fe(II)-NO heme complexes. The binding of the linker is monitored in solution using a variety of spectroscopic methods including UV-vis absorption, EPR, and IR spectroscopy. Both the N-O stretching frequency and the imidazole (14)N hyperfine coupling constants show a good correlation with the Fe-(N-donor) bond strength in these systems. The complexes with covalently attached pyridyl and alkyl imidazole ligands only exhibit weak interactions of the linker with iron(II). However, the stable six-coordinate complex [Fe(To-F(2)PP-BzIM)(NO)] (4) is obtained when a rigid benzyl linker is applied. This complex exhibits typical properties of six-coordinate ferrous heme-nitrosyls in which an N-donor ligand is bound trans to NO, including the Soret band at 427 nm and the typical nine line (14)N hyperfine splitting in the EPR spectrum. A crystal structure has been obtained for the corresponding zinc complex. Here, we report the first systematic study on the requirements for the formation of stable six-coordinate ferrous heme nitrosyl complexes in solution at room temperature in the absence of excess axial N-donor ligand.
Inorganic Chemistry | 2008
Florian Paulat; Timothy C. Berto; Serena DeBeer George; Lauren E. Goodrich; V. K. K. Praneeth; Corinne D. Sulok; Nicolai Lehnert
This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to (15)N(18)O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm(-1). Normal coordinate analysis shows that the 437 cm(-1) mode corresponds to the Fe-NO stretch, whereas the 563 cm(-1) band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.
Inorganic Chemistry | 2014
Timothy C. Berto; Nan Xu; Se Ryeon Lee; Anne J. McNeil; E. Ercan Alp; Jiyong Zhao; George B. Richter-Addo; Nicolai Lehnert
The detoxification of nitric oxide (NO) by bacterial NO reductase (NorBC) represents a paradigm of how NO can be detoxified anaerobically in cells. In order to elucidate the mechanism of this enzyme, model complexes provide a convenient means to assess potential reaction intermediates. In particular, there have been many proposed mechanisms that invoke the formation of a hyponitrite bridge between the heme b3 and nonheme iron (FeB) centers within the NorBC active site. However, the reactivity of bridged iron hyponitrite complexes has not been investigated much in the literature. The model complex {[Fe(OEP)]2(μ-N2O2)} offers a unique opportunity to study the electronic structure and reactivity of such a hyponitrite-bridged complex. Here we report the detailed characterization of {[Fe(OEP)]2(μ-N2O2)} using a combination of IR, nuclear resonance vibrational spectroscopy, electron paramagnetic resonance, and magnetic circular dichroism spectroscopy along with SQUID magnetometry. These results show that the ground-state electronic structure of this complex is best described as having two intermediate-spin (S = (3)/2) iron centers that are weakly antiferromagnetically coupled across the N2O2(2-) bridge. The analogous complex {[Fe(PPDME)]2(μ-N2O2)} shows overall similar properties. Finally, we report the unexpected reaction of {[Fe(OEP)]2(μ-N2O2)} in the presence and absence of 1-methylimidizole to yield [Fe(OEP)(NO)]. Density functional theory calculations are used to rationalize why {[Fe(OEP)]2(μ-N2O2)} cannot be formed directly by dimerization of [Fe(OEP)(NO)] and why only the reverse reaction is observed experimentally. These results thus provide insight into the general reactivity of hyponitrite-bridged iron complexes with general relevance for the N-N bond-forming step in NorBC.
Inorganic Chemistry | 2011
Timothy C. Berto; Nicolai Lehnert
The role of NO and nitrite-bound methemoglobin (Hb(III)NO(2)(-)) in hypoxic signaling is highly controversial. One provoking possibility is that hemoglobin (Hb) functions as a nitrite anhydrase, producing N(2)O(3) (from nitrite) as an NO carrier. The ability of Hb to generate N(2)O(3) would provide an intriguing means of NO release from red blood cells. We have investigated this proposed new reactivity of Hb using density functional theory (DFT) calculations. For this purpose, models of the Hb/myoglobin (Mb) active site have been constructed. Our results show that the O-bound (nitrito) form of Hb/Mb(III)NO(2)(-) is essential for the formation of N(2)O(3). The formation and release of N(2)O(3) is shown to be energetically favorable by 1-3 kcal/mol, indicating that the anhydrase function of Hb/Mb is biologically feasible.
Coordination Chemistry Reviews | 2013
Timothy C. Berto; Amy L. Speelman; Sheng Zheng; Nicolai Lehnert
Journal of the American Chemical Society | 2013
Sheng Zheng; Timothy C. Berto; Eric W. Dahl; Melissa B. Hoffman; Amy L. Speelman; Nicolai Lehnert
Archive | 2011
Nicolai Lehnert; Timothy C. Berto; Mary Grace I. Galinato; Lauren E. Goodrich
Inorganic Chemistry | 2015
Evan Warzecha; Timothy C. Berto; John F. Berry