Timothy C. Ells
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy C. Ells.
International Journal of Food Microbiology | 2010
Rabeb Miled-Bennour; Timothy C. Ells; Franco Pagotto; Jeffrey M. Farber; Annaëlle Kerouanton; Thomas Meheut; Pierre Colin; Han Joosten; Alexandre Leclercq; Nathalie Gnanou Besse
Enterobacter sakazakii has been identified as the causative agent of serious neonatal infections, associated with high mortality rate. In many cases, powdered infant formula (PIF) has been identified as the source of infection. Recently, E. sakazakii was proposed to be classified in a new genus, Cronobacter. Since knowledge on this pathogen is still incomplete, there is a need for molecular characterization schemes in order to help with epidemiological investigation and evaluate strain variability. The objectives of this study were to combine genotypic (pulsed-field gel electrophoresis [PFGE], 16S rRNA gene sequencing, and automated ribotyping) methods with traditional phenotypic biochemical methods to characterize a collection of Cronobacter isolates from various origins. In addition, the relative growth dynamics were compared by estimating the growth rates for each isolate in non-selective broth (BHI) at 25 degrees C and 37 degrees C. According to biochemical test profiles the majority of isolates were identified as Cronobacter sakazakii, which seemed to be the most common species distributed in the environment of PIF production plants. Furthermore, the PFGE technique displayed very high discriminatory power as 61 distinct pulsotypes were revealed among the 150 Cronobacter isolates. Combining information on sample origin and pulse type, 64 isolates were deemed as unique strains. Although genetic typing data for the strains clearly delineated them into clusters closely corresponding to biochemical speciation results, it was not without discrepancies as some strains did not group as predicted. Important for quantitative risk assessment is the fact that despite the high genetic heterogeneity observed for this collection, most Cronobacter strains displayed similar growth rates irrespective of species designation.
Applied and Environmental Microbiology | 2011
Timothy C. Ells; Lisbeth Truelstrup Hansen
ABSTRACT The food-borne pathogen Listeria monocytogenes is a problem for food processors and consumers alike, as the organism is resistant to harsh environmental conditions and inimical barriers implemented to prevent the survival and/or growth of harmful bacteria. One mechanism by which listeriae mediate survival is through the accumulation of compatible solutes, such as proline, betaine and carnitine. In other bacteria, including Escherichia coli, the synthesis and accumulation of another compatible solute, trehalose, are known to aid in the survival of stressed cells. The objective of this research was to investigate trehalose metabolism in L. monocytogenes, where the sugar is thought to be transferred across the cytoplasmic membrane via a specific phosphoenolpyruvate phosphotransferase system and phosphorylation to trehalose-6-phosphate (T6P). The latter is subsequently broken down into glucose and glucose-6-phosphate by α,α-(1,1) phosphotrehalase, the putative product of the treA gene. Here we report on an isogenic treA mutant of L. monocytogenes 568 (568:ΔTreA) which, relative to the wild-type strain, displays increased tolerances to multiple stressors, including heat, high osmolarity, and desiccation. This is the first study to examine the putative trehalose operon in L. monocytogenes, and we demonstrate that lmo1254 (tre A) in L. monocytogenes 568 indeed encodes a phosphotrehalase required for the hydrolysis of T6P. Disruption of the treA gene results in the accumulation of T6P which is subsequently dephosphorylated to trehalose in the cytosol, thereby contributing to the stress hardiness observed in the treA mutant. This study highlights the importance of compatible solutes for microbial survival in adverse environments.
Bellman Prize in Mathematical Biosciences | 2014
Hedia Fgaier; Martin Kalmokoff; Timothy C. Ells; Hermann J. Eberl
In a standard procedure of food safety testing, the presence of the pathogenic bacterium Listeria monocytogenes can be masked by non-pathogenic Listeria. This phenomenon of Listeria overgrowth is not well understood. We present a mathematical model for the growth of a mixed population of L. innocua and L. monocytogenes that includes competition for a common resource and allelopathic control of L. monocytogenes by L. innocua when this resource becomes limited, which has been suggested as one potential explanation for the overgrowth phenomenon. The model is tested quantitatively and qualitatively against experimental data in batch experiments. Our results indicate that the phenomenon of masked pathogens can depend on initial numbers of each population present, and on the intensity of the allelopathic effect. Prompted by the results for the batch setup, we also analyze the model in a hypothetical chemostat setup. Our results suggest that it might be possible to operate a continuous growth environment such that the pathogens outcompete the non-pathogenic species, even in cases where they would be overgrown in a batch environment.
Journal of Food Protection | 2014
Gilles Robitaille; Sébastien Choinière; Timothy C. Ells; Louise Deschênes; Akier Assanta Mafu
It is recognized that bacterial adhesion usually occurs on conditioning films made of organic macromolecules absorbed to abiotic surfaces. The objectives of this study were to determine the extent to which milk protein-coated polystyrene (PS) pegs interfere with biofilm formation and the synergistic effect of this conditioning and hypertonic growth media on the bacterial adhesion and biofilm formation of Listeria innocua, used as a nonpathogenic surrogate for Listeria monocytogenes. PS pegs were uncoated (bare PS) or individually coated with whey proteins isolate (WPI), β-lactoglobulin, bovine serum albumin, or tryptic soy broth (TSB) and were incubated in bacterial suspensions in modified Welshimers broth. After 4 h, the number of adherent cells was dependent on the coating, as follows: TSB (10(7) CFU/ml) > bare PS > β-lactoglobulin > bovine serum albumin ∼ WPI (10(4) CFU/ml). The sessile cell counts increased up to 24 h, reaching > 10(7) CFU per peg for all surfaces (P > 0.1), except for WPI-coated PS; this indicates that the inhibitory effects of milk protein conditioning films are transient, slowing down the adhesion process. The 4-h bacterial adhesion on milk protein-coated PS in modified Welshimers broth supplemented with salt (0 to 10% [wt/vol]) did not vary (P > 0.1), indicating that conditioning with milk proteins was the major determinant for inhibition of bacterial adhesion and that the synergetic effect of salt and milk proteins on adhesion was minimal. Moreover, the presence of 5 to 10% salt significantly inhibited 24-h biofilm formation on the TSB-coated and bare PS, with a decrease of >3 log at 10% (wt/vol) NaCl and almost completely depleted viable sessile bacteria on the milk protein-coated PS.
Journal of Food Protection | 2010
Timothy C. Ells; Lisbeth Truelstrup Hansen
Mild thermal processing can enhance the shelf life of cut fruits and vegetables by delaying the onset of spoilage and preserving the organoleptic properties of shredded cabbage. However, food safety issues related to this process have not been fully investigated. Therefore, the survival and growth of Listeria spp. on cabbage treated in this manner was examined. Experimentally, 24 strains of Listeria spp. (including L. monocytogenes) were inoculated onto cut and intact cabbage tissues and stored at 5 degrees C. All strains on intact tissues exhibited a moderate decline in numbers (up to 1.0 log CFU/cm(2)) over the 28-day storage period. Conversely, cut tissue supported growth of most strains during the first 7 to 14 days of incubation with maximum increases of 1.2 log CFU/cm(2). Subsequently, the survival or growth on heat-treated (50 degrees C for 3 min) and untreated shredded cabbage of four L. monocytogenes and four nonpathogenic Listeria spp. strains were compared during storage for 21 days at 5 degrees C. Growth on untreated shred for all strains was similar to the results observed on cut tissue with a maximum increase of approximately 1.0 log CFU/g. However, in the heat-treated cabbage shred all strains displayed a rapid increase in growth (up to 2.5 log CFU/g) during the first 7 days of incubation, which may be indicative of the destruction of an endogenous growth-inhibiting compound within the cabbage. In conclusion, this study shows that mild thermal treatments of cut cabbage may promote pathogen growth if other inimical barriers are not implemented downstream of the thermal treatment.
Food Microbiology | 2015
Yannan Huang; Timothy C. Ells; Lisbeth Truelstrup Hansen
This research aimed to determine whether the SigB (σ(B)) regulon and osmolytes impact the survival of the foodborne pathogen, Listeria monocytogenes, during desiccation in simulated food soils with varying salt and nutrient contents on food grade stainless steel (SS) surfaces. L. monocytogenes 568 (Lm568, serotype 1/2a), its isogenic sigB mutant (ΔsigB) and the back-complemented ΔsigB were desiccated in BHI, TSB with 1% glucose (TSB-glu), peptone physiological saline (PPS) and minimal media (MM) for 21 days at 43% relative humidity (RH) and 15 °C on SS. The effect of food related osmolytes (proline, betaine and carnitine) on desiccation survival was studied by (a) pre-culturing strains in MM with an osmolyte followed by desiccation in MM and (b) by desiccating strains in MM with an osmolyte. Desiccation survival of L. monocytogenes was positively correlated to the nutrient and osmolyte concentrations in the desiccation substrates. Initial Lm568 levels of 8 Log(CFU/cm(2)) decreased by 0.9 Log(CFU/cm(2)) in BHI and 1.1-2.9 Log(CFU/cm(2)) in TSB-glu, PPS and MM after 21 days. Comparatively, the initial survival of ΔsigB was reduced in PS and MM, while no differences were observed among the three strains in BHI and TSB-glu. Pre-culture in osmolyte containing MM enhanced (p < 0.05) desiccation survival of all strains. Desiccation in osmolyte-containing MM improved desiccation survival of all strains, albeit the protection was less than that observed after pre-culture with the osmolytes. Complementation of the ΔsigB mutant restored the wildtype phenotype. In conclusion, this work shows the protective effect of osmolytes in desiccation survival of L. monocytogenes, while the σ(B) regulon only improved the initial survival in nutrient and osmolyte poor environments.
International Journal of Food Microbiology | 2017
Marta J. Piercey; Timothy C. Ells; A. J. MacIntosh; Lisbeth Truelstrup Hansen
Listeria monocytogenes is a pathogenic foodborne microorganism noted for its ability to survive in the environment and food processing facilities. Survival may be related to the phenotype of individual strains including the ability to form biofilms and resist desiccation and/or sanitizer exposure. The objectives of this research were to compare 14 L. monocytogenes strains isolated from blood (3), food (6) and water (5) with respect to their benzalkonium chloride (BAC) sensitivity, desiccation resistance, and ability to form biofilm. Correlations were tested between those responses, and the presence of the SSI-1 (Stress Survival Islet) and LGI1/CC8 (Listeria Genomic Island 1 in a clonal complex 8 background) genetic markers. Genetic sequences from four strains representing different phenotypes were also probed for predicted amino acid differences in biofilm, desiccation, and membrane related genes. The water isolates were among the most desiccation susceptible strains, while strains exhibiting desiccation resistance harboured SSI-1 or both the SSI-1 and LGI1/CC8 markers. BAC resistance was greatest in planktonic LGI1/CC8 cells (relative to non-LGI1/CC8 cells), and higher BAC concentrations were also needed to inhibit the formation of biofilm by LGI1/CC8 strains during incubation for 48h and 6days compared to other strains. Formation of biofilm on stainless steel was not significantly (p>0.05) different among the strains. Analysis of genetic sequence data from desiccation and BAC sensitive (CP4 5-1, CP5 2-3, both from water), intermediate (Lm568, food) and desiccation and BAC resistant (08 5578, blood, human outbreak) strains led to the finding of amino acid differences in predicted functional protein domains in several biofilm, desiccation and peptidoglycan related genes (e.g., lmo0263, lmo0433, lmo0434, lmo0771, lmo0973, lmo1080, lmo1224, lmo1370, lmo1744, and lmo2558). Notably, the LGI1/CC8 strain 08-5578 had a frameshift mutation in lmo1370, a gene previously associated with desiccation resistance. In conclusion, the more desiccation and BAC resistant LGI1/CC8 isolates may pose a challenge for sanitation efforts.
Journal of Applied Microbiology | 2017
Jeyachchandran Visvalingam; Timothy C. Ells; Xianqin Yang
To examine the influence of meat plant Escherichia coli and Salmonella sp. isolates on E. coli O157 biofilm formation.
Letters in Applied Microbiology | 2018
R. Bennour Hennekinne; Laurent Guillier; L. Fazeuilh; Timothy C. Ells; S.J. Forsythe; E. Jackson; T. Meheut; N. Gnanou Besse
Cronobacter is a ubiquitous Gram‐negative pathogen bacterium capable of surviving in low water activity environments, in particular powdered infant formula (PIF). Seven Cronobacter strains representing four different species (C. sakazakii, n = 4; C. malonaticus, n = 1; C. muytjensii, n = 1; C. turicensis, n = 1) were subjected to dry stress and stored in PIF at room temperature. The resulting survivor curves showed that Cronobacter sp. can survive for extended periods of at least 3 months with a significant, but moderate, variability regarding the level of resistance between species; however, no correlation was evident regarding the origin of strains. These results are evaluated with regard to other key characteristics, including genomic profiles and biofilm formation capacities of the strains.
International Journal of Food Microbiology | 2006
Timothy C. Ells; Lisbeth Truelstrup Hansen