Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy D. Eubank is active.

Publication


Featured researches published by Timothy D. Eubank.


Cancer Research | 2006

Norepinephrine Up-regulates the Expression of Vascular Endothelial Growth Factor, Matrix Metalloproteinase (MMP)-2, and MMP-9 in Nasopharyngeal Carcinoma Tumor Cells

Eric V. Yang; Anil K. Sood; Min Chen; Yang Li; Timothy D. Eubank; Clay B. Marsh; Scott D. Jewell; Nicholas A. Flavahan; Carl Morrison; Peir En Yeh; Stanley Lemeshow; Ronald Glaser

Recent studies using ovarian cancer cells have shown that the catecholamine hormones norepinephrine (norepi) and epinephrine (epi) may influence cancer progression by modulating the expression of matrix metalloproteinases (MMP) and vascular endothelial growth factor (VEGF). The purpose of this study is to determine if the stress hormone norepi can influence the expression of MMP-2, MMP-9, and VEGF in nasopharyngeal carcinoma (NPC) tumors by using three NPC tumor cell lines. The NPC cell lines HONE-1, HNE-1, and CNE-1 were treated with norepi. The effects of norepi on MMP-2, MMP-9, and VEGF synthesis were measured by ELISA; functional MMP activity was measured by the invasive potential of the cells using a membrane invasion culture system whereas functional activity of VEGF was analyzed using a human umbilical vein endothelial cell tube formation assay. Norepi treatment increased MMP-2, MMP-9, and VEGF levels in culture supernatants of HONE-1 cells, which could be inhibited by the beta-blocker propranolol. Norepi induced the invasiveness of all NPC cell lines in a dose-dependent manner, which was blocked by CMT-3, an MMP inhibitor, and propranolol. Norepi stimulated the release of functional angiogenic VEGF by HONE-1 cells as well. Finally, HONE-1 cells were shown to express beta-adrenergic receptors as did seven of seven NPC biopsies examined. The data suggest that catecholamine hormones produced by the sympathetic-adrenal medullary axis may affect NPC tumor progression, in part, through modulation of key angiogenic cytokines.


Blood | 2013

Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.

Noura Ismail; Yijie Wang; Duaa Dakhlallah; Leni Moldovan; Kitty Agarwal; Kara Batte; Prexy Shah; Jon Wisler; Timothy D. Eubank; Susheela Tridandapani; Michael E. Paulaitis; Melissa G. Piper; Clay B. Marsh

Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation.


Cancer Research | 2013

Pancreatic Cancer-Associated Stellate Cells Promote Differentiation of Myeloid-Derived Suppressor Cells in a STAT3-Dependent Manner

Thomas A. Mace; Zeenath Ameen; Amy L. Collins; Sylwia E. Wojcik; Markus Mair; Gregory S. Young; James R. Fuchs; Timothy D. Eubank; Wendy L. Frankel; Tanios Bekaii-Saab; Mark Bloomston; Gregory B. Lesinski

Pancreatic stellate cells (PSC) are a subset of pancreatic cancer-associated fibroblasts. These cells provide prosurvival signals to tumors; however, little is known regarding their interactions with immune cells within the tumor microenvironment. We hypothesized that factors produced by human PSC could enhance myeloid-derived suppressor cell (MDSC) differentiation and function, which promotes an immunosuppressive microenvironment. Primary PSC cell lines (n = 7) were generated from human specimens and phenotypically confirmed via expression of vimentin, α-smooth muscle actin (α-SMA), and glial fibrillary acidic protein (GFAP). Luminex analysis indicated that PSC but not human fetal primary pancreatic fibroblast cells (HPF; negative controls) produced MDSC-promoting cytokines [interleukin (IL-6), VEGF, macrophage colony-stimulating factor (M-CSF) ] and chemokines (SDF-1, MCP-1). Culture of peripheral blood mononuclear cells [peripheral blood mononuclear cell (PBMC), n = 3 donors] with PSC supernatants or IL-6/granulocyte macrophage colony-stimulating factor (GM-CSF; positive control) for 7 days promoted PBMC differentiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of polymorphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ cells functionally suppressed autologous T-lymphocyte proliferation. In contrast, supernatants from HPF did not induce an MDSC phenotype in PBMCs. Culture of normal PBMCs with PSC supernatants led to STAT3 but not STAT1 or STAT5 phosphorylation. IL-6 was an important mediator as its neutralization inhibited PSC supernatant-mediated STAT3 phosphorylation and MDSC differentiation. Finally, the FLLL32 STAT3 inhibitor abrogated PSC supernatant-mediated MDSC differentiation, PSC viability, and reduced autocrine IL-6 production indicating these processes are STAT3 dependent. These results identify a novel role for PSC in driving immune escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver of stromal immunosuppression to enhance its interest as a therapeutic target.


Journal of Immunology | 2003

M-CSF Induces Vascular Endothelial Growth Factor Production and Angiogenic Activity From Human Monocytes

Timothy D. Eubank; Michelle Galloway; Christine Montague; W. James Waldman; Clay B. Marsh

The impact of the immune response in malignancy is poorly understood. While immune cells can destroy transformed cells, the targeting and accumulation of monocytes and macrophages at tumor sites may promote tumor metastases. The growth factor M-CSF is important in promoting monocyte survival. Since M-CSF−/− mice are protected against tumor metastases, we hypothesized that M-CSF induced monocytes to produce angiogenic factors that facilitate metastases. In this study we demonstrate that recombinant human M-CSF induces freshly isolated normal human monocytes to produce and release the growth factor vascular endothelial growth factor (VEGF) in a dose-dependent manner, which peaked at 5 days in culture. VEGF released by these monocytes is biologically active, as cell-free supernatants from these M-CSF-stimulated monocytes induced tube formation in HUVEC. Network formation by these HUVECs after treatment with supernatants from monocytes stimulated with M-CSF were inhibited by anti-VEGF, but not by the isogenic control, Abs. Collectively, these data support an important role for M-CSF and monocytes in VEGF production and angiogenesis.


Cancer Research | 2009

Granulocyte Macrophage Colony-Stimulating Factor Inhibits Breast Cancer Growth and Metastasis by Invoking an Anti-Angiogenic Program in Tumor-Educated Macrophages

Timothy D. Eubank; Ryan D. Roberts; Mahmood Khan; Jennifer M. Curry; Gerard J. Nuovo; Periannan Kuppusamy; Clay B. Marsh

Tumor-educated macrophages facilitate tumor metastasis and angiogenesis. We discovered that granulocyte macrophage colony-stimulating factor (GM-CSF) blocked macrophages vascular endothelial growth factor (VEGF) activity by producing soluble VEGF receptor-1 (sVEGFR-1) and determined the effect on tumor-associated macrophage behavior and tumor growth. We show GM-CSF treatment of murine mammary tumors slowed tumor growth and slowed metastasis. These tumors had more macrophages, fewer blood vessels, and lower oxygen concentrations. This effect was sVEGFR-1 dependent. In situ hybridization and flow cytometry identified macrophages as the primary source of sVEGFR-1. These data suggest that GM-CSF can re-educate macrophages to reduce angiogenesis and metastases in murine breast cancer.


PLOS ONE | 2013

Prolonged Restraint Stress Increases IL-6, Reduces IL-10, and Causes Persistent Depressive-Like Behavior That Is Reversed by Recombinant IL-10

Jeffrey L. Voorhees; A.J. Tarr; E.S. Wohleb; Jonathan P. Godbout; Xiaokui Mo; John F. Sheridan; Timothy D. Eubank; Clay B. Marsh

Altered inflammatory cytokine profiles are often observed in individuals suffering from major depression. Recent clinical work reports on elevated IL-6 and decreased IL-10 in depression. Elevated IL-6 has served as a consistent biomarker of depression and IL-10 is proposed to influence depressive behavior through its ability to counterbalance pro-inflammatory cytokine expression. Clinical and animal studies suggest a role for IL-10 in modifying depressive behavior. Murine restraint stress (RST) is regularly employed in the study of behavioral and biological symptoms associated with depressive disorders. While responses to acute RST exposure have been widely characterized, few studies have examined the ongoing and longitudinal effects of extended RST and fewer still have examined the lasting impact during the post-stress period. Consistent with clinical data, we report that a protocol of prolonged murine RST produced altered cytokine profiles similar to those observed in major depressive disorder. Parallel to these changes in circulating cytokines, IL-10 mRNA expression was diminished in the cortex and hippocampus throughout the stress period and following cessation of RST. Moreover, chronic RST promoted depressive-like behavior throughout the 28-day stress period and these depressive-like complications were maintained weeks after cessation of RST. Because of the correlation between IL-10 suppression and depressive behavior and because many successful antidepressant therapies yield increases in IL-10, we examined the effects of IL-10 treatment on RST-induced behavioral changes. Behavioral deficits induced by RST were reversed by exogenous administration of recombinant IL-10. This work provides one of the first reports describing the biological and behavioral impact following prolonged RST and, taken together, this study provides details on the correlation between responses to chronic RST and those seen in depressive disorders.


PLOS ONE | 2008

M-CSF Signals through the MAPK/ERK Pathway via Sp1 to Induce VEGF Production and Induces Angiogenesis In Vivo

Jennifer M. Curry; Timothy D. Eubank; Ryan D. Roberts; Yijie Wang; Nabendu Pore; Amit Maity; Clay B. Marsh

Background M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. Methodology and Results In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. Conclusion These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo.


Blood | 2011

Opposing roles for HIF-1α and HIF-2α in the regulation of angiogenesis by mononuclear phagocytes

Timothy D. Eubank; Julie M. Roda; Haowen Liu; Todd O'Neil; Clay B. Marsh

Macrophages contribute to tumor growth through the secretion of the proangiogenic molecule vascular endothelial growth factor (VEGF). We previously observed that monocytes treated with the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produce a soluble form of the VEGF receptor-1 (sVEGFR-1), which neutralizes VEGF biologic activity. The VEGF and VEGFR-1 promoters both contain a hypoxia regulatory element, which binds the hypoxia-inducible factor (HIF) transcription factors under hypoxic conditions. Based on this observation, we examined VEGF and sVEGFR-1 production from monocytes cultured at various O(2) concentrations. The amount of sVEGFR-1 production observed from GM-CSF-treated monocytes increased with decreasing levels of O(2). This sVEGFR-1 was biologically active and sequestered VEGF. To evaluate the role of the HIFs in sVEGFR-1 production, we used macrophages with a genetic deletion of HIF-1α. HIF-1α(-/-) macrophages cultured with GM-CSF at hypoxia secreted diminished amounts of VEGF compared with HIF-1α(+/+) macrophages, whereas sVEGFR-1 secretion was unaffected. In contrast, siRNA-mediated knockdown of HIF-2α inhibited the production of sVEGFR-1 in response to GM-CSF and low O(2), whereas VEGF production was unaffected. These studies suggest that hypoxia, generally thought to promote angiogenesis, can induce antiangiogenic behavior from macrophages within a GM-CSF-rich environment. Furthermore, these results suggest specific and independent roles for HIF-1α and HIF-2α in hypoxic macrophages.


Magnetic Resonance in Medicine | 2012

In vivo monitoring of pH, redox status, and glutathione using L-band EPR for assessment of therapeutic effectiveness in solid tumors

Andrey A. Bobko; Timothy D. Eubank; Jeffrey L. Voorhees; Olga V. Efimova; Igor A. Kirilyuk; Sergey Petryakov; Dmitrii G. Trofimiov; Clay B. Marsh; Jay L. Zweier; I. A. Grigor'ev; Alexandre Samouilov; Valery V. Khramtsov

Approach for in vivo real‐time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L‐band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony‐stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony‐stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony‐stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double‐resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med, 2011.


Journal of Immunology | 2011

Hypoxia-Inducible Factor-2α Regulates GM-CSF–Derived Soluble Vascular Endothelial Growth Factor Receptor 1 Production from Macrophages and Inhibits Tumor Growth and Angiogenesis

Julie M. Roda; Laura A. Sumner; Randall Evans; Gary Phillips; Clay B. Marsh; Timothy D. Eubank

Macrophage secretion of vascular endothelial growth factor (VEGF) in response to the hypoxic tumor microenvironment contributes to tumor growth, angiogenesis, and metastasis. We have recently demonstrated that macrophages stimulated with GM-CSF at low O2 secrete high levels of a soluble form of the VEGF receptor 1 (sVEGFR-1), which neutralizes VEGF and inhibits its biological activity. Using small interfering RNA targeting to deplete hypoxia-inducible factor (HIF)-1α or HIF-2α in murine macrophages, we found that macrophage production of sVEGFR-1 in response to low O2 was dependent on HIF-2α, whereas HIF-1α specifically regulated VEGF production. In our current report, we evaluated the growth of B16F10 malignant melanoma in mice with a monocyte/macrophage-selective deletion of HIF-1α or HIF-2α (HIF-1αflox/flox- or HIF-2αflox/+/LysMcre mice). GM-CSF treatment increased intratumoral VEGF and sVEGFR-1 in control mice, an effect that was associated with a decrease in microvessel density. GM-CSF treatment of HIF-1αflox/flox/LysMcre mice induced sVEGFR-1 but not VEGF, resulting in an overall greater reduction in tumor growth and angiogenesis compared with control mice. In addition, real-time PCR for melanoma-specific genes revealed a significantly reduced presence of lung micrometastases in HIF-1αflox/flox/LysMcre mice treated with GM-CSF. Conversely, GM-CSF treatment induced VEGF but not sVEGFR-1 in HIF-2αflox/+/LysMcre mice, and, correspondingly, GM-CSF did not decrease tumor growth, angiogenesis, or lung metastasis in these mice. This study reveals opposing roles for the HIFs in the regulation of angiogenesis by tumor-associated macrophages and suggests that administration of GM-CSF might be an effective means of inducing sVEGFR-1 and inhibiting tumor growth and angiogenesis in patients with melanoma.

Collaboration


Dive into the Timothy D. Eubank's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge