Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy D. Sharpe is active.

Publication


Featured researches published by Timothy D. Sharpe.


Proceedings of the National Academy of Sciences of the United States of America | 2006

General structural motifs of amyloid protofilaments

Neil Ferguson; Johanna Becker; Henning Tidow; Sandra Tremmel; Timothy D. Sharpe; Gerd Krause; Jeremy Flinders; Miriana Petrovich; John Berriman; Hartmut Oschkinat; Alan R. Fersht

Human CA150, a transcriptional activator, binds to and is co-deposited with huntingtin during Huntingtons disease. The second WW domain of CA150 is a three-stranded β-sheet that folds in vitro in microseconds and forms amyloid fibers under physiological conditions. We found from exhaustive alanine scanning studies that fibrillation of this WW domain begins from its denatured conformations, and we identified a subset of residues critical for fibril formation. We used high-resolution magic-angle-spinning NMR studies on site-specific isotopically labeled fibrils to identify abundant long-range interactions between side chains. The distribution of critical residues identified by the alanine scanning and NMR spectroscopy, along with the electron microscopy data, revealed the protofilament repeat unit: a 26-residue nonnative β-hairpin. The structure we report has similarities to the hairpin formed by the Aβ(1–40) protofilament, yet also contains closely packed side-chains in a “steric zipper” arrangement found in the cross-β spine formed from small peptides from the Sup35 prion protein. Fibrillation of unrelated amyloidogenic sequences shows the common feature of zippered repeat units that act as templates for fiber elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Distinguishing between cooperative and unimodal downhill protein folding

Fang Huang; Satoshi Sato; Timothy D. Sharpe; Liming Ying; Alan R. Fersht

Conventional cooperative protein folding invokes discrete ensembles of native and denatured state structures in separate free-energy wells. Unimodal noncooperative (“downhill”) folding, however, proposes an ensemble of states occupying a single free-energy well for proteins folding at ≥4 × 104 s−1 at 298 K. It is difficult to falsify unimodal mechanisms for such fast folding proteins by standard equilibrium experiments because both cooperative and unimodal mechanisms can present the same time-averaged structural, spectroscopic, and thermodynamic properties when the time scale used for observation is longer than for equilibration. However, kinetics can provide the necessary evidence. Chevron plots with strongly sloping linear refolding arms are very difficult to explain by downhill folding and are a signature for cooperative folding via a transition state ensemble. The folding kinetics of the peripheral subunit binding domain POB and its mutants fit to strongly sloping chevrons at observed rate constants of >6 × 104 s−1 in denaturant solution, extrapolating to 2 × 105 s−1 in water. Protein A, which folds at 105 s−1 at 298 K, also has a well-defined chevron. Single-molecule fluorescence energy transfer experiments on labeled Protein A in the presence of denaturant demonstrated directly bimodal distributions of native and denatured states.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Rapid amyloid fiber formation from the fast-folding WW domain FBP28.

Neil Ferguson; John Berriman; Miriana Petrovich; Timothy D. Sharpe; John T. Finch; Alan R. Fersht

The WW domains are small proteins that contain a three-stranded, antiparallel β-sheet. The 40-residue murine FBP28 WW domain rapidly formed twirling ribbon-like fibrils at physiological temperature and pH, with morphology typical of amyloid fibrils. These ribbons were unusually wide and well ordered, making them highly suitable for structural studies. Their x-ray and electron-diffraction patterns displayed the characteristic amyloid fiber 0.47-nm reflection of the cross-β diffraction signature. Both conventional and electron cryomicroscopy showed clearly that the ribbons were composed of many 2.5-nm-wide subfilaments that ran parallel to the long axis of the fiber. There was a region of lower density along the center of each filament. Lateral association of these filaments generated twisted, often interlinked, sheets up to 40 nm wide and many microns in length. The pitch of the helix varied from 60 to 320 nm, depending on the width of the ribbon. The wild-type FBP28 fibers were formed under conditions in which multiexponential folding kinetics is observed in other studies and which was attributed to a change in the mechanism of folding. It is more likely that those phases result from initial events in the off-pathway aggregation observed here.


Journal of Molecular Biology | 2010

Structural Basis for Par-4 Recognition by the Spry Domain-and Socs Box-Containing Proteins Spsb1, Spsb2, and Spsb4.

Panagis Filippakopoulos; Andrew Low; Timothy D. Sharpe; Jonas Uppenberg; Shenggen Yao; Zhihe Kuang; P. Savitsky; Rowena S. Lewis; Sandra E. Nicholson; Raymond S. Norton; Alex N. Bullock

The mammalian SPRY domain- and SOCS box-containing proteins, SPSB1 to SPSB4, belong to the SOCS box family of E3 ubiquitin ligases. Substrate recognition sites for the SPRY domain are identified only for human Par-4 (ELNNNL) and for the Drosophila orthologue GUSTAVUS binding to the DEAD-box RNA helicase VASA (DINNNN). To further investigate this consensus motif, we determined the crystal structures of SPSB1, SPSB2, and SPSB4, as well as their binding modes and affinities for both Par-4 and VASA. Mutation of each of the three Asn residues in Par-4 abrogated binding to all three SPSB proteins, while changing EL to DI enhanced binding. By comparison to SPSB1 and SPSB4, the more divergent protein SPSB2 showed only weak binding to Par-4 and was hypersensitive to DI substitution. Par-4(59–77) binding perturbed NMR resonances from a number of SPSB2 residues flanking the ELNNN binding site, including loop D, which binds the EL/DI sequence. Although interactions with the consensus peptide motif were conserved in all structures, flanking sites in SPSB2 were identified as sites of structural change. These structural changes limit high-affinity interactions for SPSB2 to aspartate-containing sequences, whereas SPSB1 and SPSB4 bind strongly to both Par-4 and VASA peptides.


Journal of Biological Chemistry | 2014

Inherent Regulation of EAL Domain-catalyzed Hydrolysis of Second Messenger Cyclic di-GMP

Amit Sundriyal; Claudia Massa; Dietrich Samoray; Fabian Zehender; Timothy D. Sharpe; Urs Jenal; Tilman Schirmer

Background: The bacterial second messenger cyclic di-GMP (c-di-GMP) is degraded by EAL phosphodiesterases. Results: The isolated EAL domain is active only as a homodimer. Substrate binding is coupled with EAL dimerization. Conclusion: Activity of many full-length EAL phosphodiesterases may be regulated by catalytic domain dimerization. Significance: A generic mechanism for the regulation of a central node of c-di-GMP signaling is provided. The universal second messenger cyclic di-GMP (cdG) is involved in the regulation of a diverse range of cellular processes in bacteria. The intracellular concentration of the dinucleotide is determined by the opposing actions of diguanylate cyclases and cdG-specific phosphodiesterases (PDEs). Whereas most PDEs have accessory domains that are involved in the regulation of their activity, the regulatory mechanism of this class of enzymes has remained unclear. Here, we use biophysical and functional analyses to show that the isolated EAL domain of a PDE from Escherichia coli (YahA) is in a fast thermodynamic monomer-dimer equilibrium, and that the domain is active only in its dimeric state. Furthermore, our data indicate thermodynamic coupling between substrate binding and EAL dimerization with the dimerization affinity being increased about 100-fold upon substrate binding. Crystal structures of the YahA-EAL domain determined under various conditions (apo, Mg2+, cdG·Ca2+ complex) confirm structural coupling between the dimer interface and the catalytic center. The built-in regulatory properties of the EAL domain probably facilitate its modular, functional combination with the diverse repertoire of accessory domains.


Analytical Chemistry | 2013

Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.

Clive A. Smith; Xin Li; Todd H. Mize; Timothy D. Sharpe; Edmund I. Graziani; Chris Abell; Wilhelm T. S. Huck

Droplet-based fluidics is emerging as a powerful platform for single cell analysis, directed evolution of enzymes, and high throughput screening studies. Due to the small amounts of compound compartmentalized in each droplet, detection has been primarily by fluorescence. To extend the range of experiments that can be carried out in droplets, we have developed the use of electrospray ionization mass spectrometry (ESI-MS) to measure femtomole quantities of proteins in individual pico- to nanoliter droplets. Surfactant-stabilized droplets containing analyte were produced in a flow-focusing droplet generation microfluidic device using fluorocarbon oil as the continuous phase. The droplets were collected off-chip for storage and reinjected into microfluidic devices prior to spraying the emulsion into an ESI mass spectrometer. Crucially, high quality mass spectra of individual droplets were obtained from emulsions containing a mixture of droplets at >150 per minute, opening up new routes to high throughput screening studies.


Journal of Molecular Biology | 2009

Downhill versus barrier-limited folding of BBL 1: energetic and structural perturbation effects upon protonation of a histidine of unusually low pKa

Eyal Arbely; Trevor J. Rutherford; Timothy D. Sharpe; Neil Ferguson; Alan R. Fersht

A dispersion of melting temperatures at pH5.3 for individual residues of the BBL protein domain has been adduced as evidence for barrier-free downhill folding. Other members of the peripheral subunit domain family fold cooperatively at pH7. To search for possible causes of anomalies in BBLs denaturation behavior, we measured the pH titration of individual residues by heteronuclear NMR. At 298 K, the pK(a) of His142 was close to that of free histidine at 6.47+/-0.04, while that of the more buried His166 was highly perturbed at 5.39+/-0.02. Protonation of His166 is thus energetically unfavorable and destabilizes the protein by approximately 1.5 kcal/mol. Changes in C(alpha) secondary shifts at pH5.3 showed a decrease in helicity of the C-terminus of helix 2, where His166 is located, which was accompanied by a measured decrease of 1.1+/-0.2 kcal/mol in stability from pH7 to 5.3. Protonation of His166 perturbs, therefore, the structure of BBL. Only approximately 1% of the structurally perturbed state will be present at the biologically relevant pH7.6. Experiments at pH5.3 report on a near-equal mixture of the two different native states. Further, at this pH, small changes of pH and pK(a) induced by changes in temperature will have near-maximal effects on pH-dependent conformational equilibria and on propagation of experimental error. Accordingly, conventional barrier-limited folding predicts some dispersion of measured thermal unfolding curves of individual residues at pH5.3.


Journal of Molecular Biology | 2009

Downhill versus barrier-limited folding of BBL 2: mechanistic insights from kinetics of folding monitored by independent tryptophan probes.

Hannes Neuweiler; Timothy D. Sharpe; Christopher M. Johnson; Daniel P. Teufel; Neil Ferguson; Alan R. Fersht

Barrier-free downhill folding has been proposed for the peripheral subunit-binding domain BBL. To date, ultrafast kinetic experiments on BBL, which are crucial for a mechanistic understanding of folding, have been hampered by the lack of good intrinsic spectroscopic probes. Here, we present a detailed kinetic characterization of three single-point tryptophan mutants of BBL that have suitable fluorescence properties for following microsecond and nanosecond folding kinetics using temperature jump fluorescence spectroscopy. Experiments were performed at pH 7, which is optimal for stability and minimizes complications that arise from the presence of an alternative native-state conformation of BBL at lower pH. We examined the dependence of rate and equilibrium constants on concentration of denaturant and found that they follow well-established laws allowing kinetic transients to be related to events in folding and compared with equilibrium data. Logarithms of rate constants versus denaturant concentration yielded plots (chevrons) that are characteristic of barrier-limited folding for all mutants investigated, including a truncated sequence that was previously used in the proposal of downhill folding. The thermodynamic quantities calculated from the rate constants were in excellent agreement with those directly determined from equilibrium denaturation based on empirical two-state equations. We found that sequence truncation of BBL as used in studies proposing downhill folding leads to a large loss in helical content and protein stability, which were exacerbated at the low pH used in those studies. The kinetics and equilibria of folding of BBL fit to conventional barrier-limited kinetics.


Journal of Molecular Biology | 2009

The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family.

Hannes Neuweiler; Timothy D. Sharpe; Trevor J. Rutherford; Christopher M. Johnson; Mark D. Allen; Neil Ferguson; Alan R. Fersht

Studies on members of protein families with similar structures but divergent sequences provide insights into the effects of sequence composition on the mechanism of folding. Members of the peripheral subunit-binding domain (PSBD) family fold ultrafast and approach the smallest size for cooperatively folding proteins. Phi-Value analysis of the PSBDs E3BD and POB reveals folding via nucleation-condensation through structurally very similar, polarized transition states. Here, we present a Phi-value analysis of the family member BBL and found that it also folds by a nucleation-condensation mechanism. The mean Phi values of BBL, E3BD, and POB were near identical, indicating similar fractions of non-covalent interactions being formed in the transition state. Despite the overall conservation of folding mechanism in this protein family, however, the pattern of Phi values determined for BBL revealed a larger dispersion of the folding nucleus across the entire structure, and the transition state was less polarized. The observed plasticity of transition-state structure can be rationalized by the different helix-forming propensities of PSBD sequences. The very strong helix propensity in the first helix of BBL, relative to E3BD and POB, appears to recruit more structure formation in that helix in the transition state at the expense of weaker interactions in the second helix. Differences in sequence composition can modulate transition-state structure of even the smallest natural protein domains.


Journal of Molecular Biology | 2008

Conservation of transition state structure in fast folding peripheral subunit-binding domains.

Timothy D. Sharpe; Neil Ferguson; Christopher M. Johnson; Alan R. Fersht

Phi-value analysis was used to characterise the structure of the transition state (TS) for folding of POB L146A Y166W, a peripheral subunit-binding domain that folds in microseconds. Helix 2 was structured in the TS with consolidating interactions from the structured loop that connects the two alpha-helices. This distribution of Phi-values was very similar to that determined for E3BD F166W, a homologue with high sequence and structural similarity. The extrapolated folding rate constants in water at 298 K were 210,000 s(-1) for POB and 27,500 s(-1) for E3BD. A contribution to the faster folding of POB came from its having significantly greater helical propensity in helix 2, the folding nucleus. The folding rate also appeared to be influenced by differences in the sequence and structural properties of the loop connecting the two helices. Unimodal downhill folding has been proposed as a conserved, biologically important property of peripheral subunit-binding domains. POB folds five times faster and E3BD folds slower than a proposed limit of 40,000 s(-1) for barrier-limited folding. However, experimental evidence strongly suggests that both POB L146A Y166W and E3BD F166W fold in a barrier-limited process through a very similar TS ensemble.

Collaboration


Dive into the Timothy D. Sharpe's collaboration.

Top Co-Authors

Avatar

Alan R. Fersht

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Neil Ferguson

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trevor J. Rutherford

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Abell

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge