Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy F. Wright is active.

Publication


Featured researches published by Timothy F. Wright.


Animal Behaviour | 2003

Detection and discrimination of natural calls in masking noise by birds: estimating the active space of a signal

Bernard Lohr; Timothy F. Wright; Robert J. Dooling

We tested the ability of birds to detect and discriminate natural vocal signals in the presence of masking noise using operant conditioning. Masked thresholds were measured for budgerigars, Melopsittacus undulatus, and zebra finches, Taeniopygia guttata, on natural contact calls of budgerigars, zebra finches and canaries, Serinus canaria. Thresholds increased with increasing call bandwidth, the presence of amplitude modulation and high rates of frequency modulation in calls. As expected, detection thresholds increased monotonically with background noise level. Call detection thresholds varied with the spectral shape of noise. Vocal signals were masked predominantly by noise energy in the spectral region of the signals and not by energy at spectral regions remote from the signals. In all cases, thresholds for discrimination between calls of the same species were higher than thresholds for detection of those calls. Our data provide the first opportunity to estimate distances over which specific communication signals may be effective (i.e. their ‘active space’) using masked thresholds for the signals themselves. Our results suggest that measures of peak sound pressure level, combined with the spectrum level of noise within the frequency channel having the greatest signal power relative to background noise, give the most similar results for estimating a signal’s maximum communication distance across a variety of sounds. We provide a simple model for estimating likely detection and discrimination distances for the signals tested here.  2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.


Molecular Biology and Evolution | 2008

A Multilocus Molecular Phylogeny of the Parrots (Psittaciformes): Support for a Gondwanan Origin during the Cretaceous

Timothy F. Wright; Erin E. Schirtzinger; Tania E. Matsumoto; Jessica R. Eberhard; Gary R. Graves; Juan J. Sanchez; Sara Capelli; Heinrich Müller; Julia Scharpegge; Geoffrey K. Chambers; Robert C. Fleischer

The question of when modern birds (Neornithes) first diversified has generated much debate among avian systematists. Fossil evidence generally supports a Tertiary diversification, whereas estimates based on molecular dating favor an earlier diversification in the Cretaceous period. In this study, we used an alternate approach, the inference of historical biogeographic patterns, to test the hypothesis that the initial radiation of the Order Psittaciformes (the parrots and cockatoos) originated on the Gondwana supercontinent during the Cretaceous. We utilized broad taxonomic sampling (representatives of 69 of the 82 extant genera and 8 outgroup taxa) and multilocus molecular character sampling (3,941 bp from mitochondrial DNA (mtDNA) genes cytochrome oxidase I and NADH dehydrogenase 2 and nuclear introns of rhodopsin intron 1, tropomyosin alpha-subunit intron 5, and transforming growth factor ss-2) to generate phylogenetic hypotheses for the Psittaciformes. Analyses of the combined character partitions using maximum parsimony, maximum likelihood, and Bayesian criteria produced well-resolved and topologically similar trees in which the New Zealand taxa Strigops and Nestor (Psittacidae) were sister to all other psittaciforms and the cockatoo clade (Cacatuidae) was sister to a clade containing all remaining parrots (Psittacidae). Within this large clade of Psittacidae, some traditionally recognized tribes and subfamilies were monophyletic (e.g., Arini, Psittacini, and Loriinae), whereas several others were polyphyletic (e.g., Cyclopsittacini, Platycercini, Psittaculini, and Psittacinae). Ancestral area reconstructions using our Bayesian phylogenetic hypothesis and current distributions of genera supported the hypothesis of an Australasian origin for the Psittaciformes. Separate analyses of the timing of parrot diversification constructed with both Bayesian relaxed-clock and penalized likelihood approaches showed better agreement between geologic and diversification events in the chronograms based on a Cretaceous dating of the basal split within parrots than the chronograms based on a Tertiary dating of this split, although these data are more equivocal. Taken together, our results support a Cretaceous origin of Psittaciformes in Gondwana after the separation of Africa and the India/Madagascar block with subsequent diversification through both vicariance and dispersal. These well-resolved molecular phylogenies will be of value for comparative studies of behavior, ecology, and life history in parrots.


Proceedings of the Royal Society of London B: Biological Sciences | 1996

Regional Dialects in the Contact Call of a Parrot

Timothy F. Wright

This study describes a system of regional dialects in the contact call of a parrot, the yellow-naped amazon (Amazona auropalliata.) Spectrographic cross-correlation analyses of calls from multiple adults at 16 roosts in Costa Rica reveal two distinct patterns of geographic variation in call structure: first, variation in the basic structure of the call by which roosts can be classified into three distinct dialects, and second, fine-scale variation of call structure among roosts within a dialect. Some birds at roosts bordering two dialects use the calls of both neighbouring dialects interchangeably. These results suggest that there are two distinct processes governing the diffusion of call types among roosts, with dialect borders acting as barriers to the spread of foreign calls. Such a dialect system could be maintained through either reduced dispersal of birds across dialect boundaries or alternatively, by reduced diffusion of call types. These two possibilities have different implications for the genetic isolation of populations and thus for both speciation and learning. This pattern is broadly similar to those seen in some songbirds and may be maintained in a similar manner.


Ethology Ecology & Evolution | 2010

Behavioral flexibility and species invasions: the adaptive flexibility hypothesis

Timothy F. Wright; Jessica R. Eberhard; Elizabeth A. Hobson; Michael L. Avery; Michael A. Russello

Behavioral flexibility is an important adaptive response to changing environments for many animal species. Such plasticity may also promote the invasion of novel habitats by introduced species by providing them with the ability to expand or change their ecological niche, a longstanding idea with recent empirical support. At the individual level, flexibility may arise through innovation, in which an individual invents a new behavior, or through social learning, in which an individual adopts a behavior used by others. There is increasing evidence that the adaptive value of these two modes of learning, and the overall expression of behavioral flexibility, may vary with social and environmental context. In this paper, we propose that invasive species may change the degree to which they express behavioral flexibility in an adaptive manner during the different stages of invasion. Specifically, the “adaptive flexibility hypothesis” predicts that the expression of behavioral flexibility, and thus the diversity of behaviors observed in a population, will be high during the initial stage of introduction into a novel environment due to innovation, followed by a decline in behavioral diversity during the establishment and growth of a founding population due to social learning of successful behavioral variants. We discuss several alternatives to this hypothesis and suggest empirical and theoretical tests of these hypotheses. This “adaptive flexibility hypothesis” suggests that a more nuanced approach to the study of the behaviors employed by individuals in populations at different invasion stages could generate new insight into the importance of such flexibility during species invasions, and the evolution of behavioral plasticity in general


Proceedings of the Royal Society of London B: Biological Sciences | 2001

Population genetic structure and vocal dialects in an amazon parrot

Timothy F. Wright; Gerald S. Wilkinson

The relationship between cultural and genetic evolution was examined in the yellow–naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum–likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow–naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow–naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types.


Molecular Ecology | 2010

Genetic evidence for high propagule pressure and long-distance dispersal in monk parakeet (Myiopsitta monachus) invasive populations

Anders Gonçalves da Silva; Jessica R. Eberhard; Timothy F. Wright; Michael L. Avery; Michael A. Russello

The monk parakeet (Myiopsitta monachus) is a successful invasive species that does not exhibit life history traits typically associated with colonizing species (e.g., high reproductive rate or long‐distance dispersal capacity). To investigate this apparent paradox, we examined individual and population genetic patterns of microsatellite loci at one native and two invasive sites. More specifically, we aimed at evaluating the role of propagule pressure, sexual monogamy and long‐distance dispersal in monk parakeet invasion success. Our results indicate little loss of genetic variation at invasive sites relative to the native site. We also found strong evidence for sexual monogamy from patterns of relatedness within sites, and no definite cases of extra‐pair paternity in either the native site sample or the examined invasive site. Taken together, these patterns directly and indirectly suggest that high propagule pressure has contributed to monk parakeet invasion success. In addition, we found evidence for frequent long‐distance dispersal at an invasive site (∼100 km) that sharply contrasted with previous estimates of smaller dispersal distance made in the native range (∼2 km), suggesting long‐range dispersal also contributes to the species’ spread within the United States. Overall, these results add to a growing body of literature pointing to the important role of propagule pressure in determining, and thus predicting, invasion success, especially for species whose life history traits are not typically associated with invasiveness.


BMC Evolutionary Biology | 2008

Genetic evidence links invasive monk parakeet populations in the United States to the international pet trade

Michael A. Russello; Michael L. Avery; Timothy F. Wright

BackgroundSevere ecological and economic impacts caused by some invasive species make it imperative to understand the attributes that permit them to spread. A notorious crop pest across its native range in South America, the monk parakeet (Myiopsitta monachus) has become established on four other continents, including growing populations in the United States. As a critical first step to studying mechanisms of invasion success in this species, here we elucidated the geographical and taxonomic history of the North American invasions of the monk parakeet. Specifically, we conducted a genetic assessment of current monk parakeet taxonomy based on mitochondrial DNA control region sequences from 73 museum specimens. These data supported comparative analyses of mtDNA lineage diversity in the native and naturalized ranges of the monk parakeet and allowed for identification of putative source populations.ResultsThere was no molecular character support for the M. m. calita, M. m. cotorra, and M. m. monachus subspecies, while the Bolivian M. m. luchsi was monophyletic and diagnosably distinct. Three haplotypes sampled in the native range were detected within invasive populations in Florida, Connecticut, New Jersey and Rhode Island, the two most common of which were unique to M. m. monachus samples from eastern Argentina and bordering areas in Brazil and Uruguay.ConclusionThe lack of discrete morphological character differences in tandem with the results presented here suggest that M. m. calita, M. m. cotorra and M. m. monachus are in need of formal taxonomic revision. The genetic distinctiveness of M. m. luchsi is consistent with previous recommendations of allospecies status for this taxon. The geographic origins of haplotypes sampled in the four U.S. populations are concordant with trapping records from the mid-20th century and suggest that propagule pressure exerted by the international pet bird trade contributed to the establishment of invasive populations in the United States.


Animal Behaviour | 2008

Stability and change in vocal dialects of the yellow-naped amazon

Timothy F. Wright; Christine R. Dahlin; Alejandro Salinas-Melgoza

Cultural evolution is an important force in creating and maintaining behavioral variation in some species. Vocal dialects have provided a useful model for the study of cultural evolution and its interactions with genetic evolution. This study examined the acoustic and geographic changes in vocal dialects over an eleven-year span in the yellow-naped amazon, Amazona auropalliata, in Costa Rica. Contact calls were recorded at 16 communal night roosts in 1994 and 19 roosts in 2005, with 12 roosts sampled in both surveys. In both surveys three dialects were found, each characterized by a distinctive contact call type and each encompassing multiple roosts. The limits between two of these dialects, the North and South dialects, was found to be geographically stable, while at the boundary between the North and Nicaraguan dialect there was introgression of each call type into roosts in the bordering dialect. Acoustic measurements and cross-correlations of spectrograms detected no change in the acoustic structure of contact calls in the South dialect but did show significant differences in the calls of both the North and Nicaraguan dialect between 1994 and 2005. These results are consistent with the vocal convergence hypothesis that proposes that dialects are long-term features maintained through some combination of biased transmission of local call types and purifying selection against foreign call types. Migration, copying errors and cultural drift may also play a role in the more subtle changes seen in the acoustic form of dialect call types.


Animal Behaviour | 2013

An analytical framework for quantifying and testing patterns of temporal dynamics in social networks

Elizabeth A. Hobson; Michael L. Avery; Timothy F. Wright

Change is fundamental to all social systems. Temporal dynamics are critical in understanding how relationships form and change over time but rarely are studied explicitly in animal groups. Social network approaches are useful in describing association patterns and provide promising tools for investigating the dynamics of change in social structure but have rarely been used to quantify how animal associations change over time. In this study, we describe and test a framework for temporal analysis of social structure. We propose an analytical framework of methods that integrates across social scales and comparatively analyses change in social structure across multiple types of social association. These methods enable comparisons in groups that differ in size and are flexible to allow application to weighted and unweighted networks, where ties can be directed or undirected, and relationships can be symmetric or asymmetric. We apply this analytical framework to temporal social network data from experimentally formed captive groups of monk parakeets, Myiopsitta monachus, to both evaluate our analysis methods and characterize the social structure of this species. We compared dynamics of dyadic network formation, ego network formation and global network stabilization patterns across neutral, affiliative and agonistic associations. We found that social structure of captive monk parakeets formed and stabilized over a short period, but patterns differed by social association type. We also found evidence for consistency in the temporal dynamics of formation and stabilization of social structure between replicate social groups. Our analysis methods successfully identified change in social structure that corresponded well with qualitative observations. This framework is likely to be useful in characterizing patterns of temporal dynamics in social structure in longitudinal data in wide variety of social systems and species. 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.


PLOS ONE | 2012

Evidence for Vocal Learning and Limited Dispersal as Dual Mechanisms for Dialect Maintenance in a Parrot

Alejandro Salinas-Melgoza; Timothy F. Wright

Studies of avian vocal dialects commonly find evidence of geographic and acoustic stability in the face of substantial gene flow between dialects. The vocal imitation and reduced dispersal hypotheses are alternatives to explain this mismatch between vocal and genetic variation. We experimentally simulated dispersal in the yellow-naped amazon (Amazona auropalliata) by moving individuals within and across dialect boundaries in Costa Rica. One juvenile translocated across dialect boundaries altered its contact call to imitate the acoustic form of the local call six weeks post-release. In contrast, four adults translocated across dialect boundaries returned to their original capture site within 120 days, while five cross-dialect translocated adults who remained at the release site did not alter their contact calls. Translocated individuals were observed to show some segregation from resident flocks. The observation of vocal imitation by the juvenile bird supports the vocal imitation, whereas the behavior of adults is more consistent with the reduced dispersal hypotheses. Taken together, our results suggest that both post-dispersal learning by juveniles and high philopatry in adults could explain the stability of vocal dialects in the face of immigration and gene flow.

Collaboration


Dive into the Timothy F. Wright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Avery

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael A. Russello

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo Joseph

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge