Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy G. Barraclough is active.

Publication


Featured researches published by Timothy G. Barraclough.


Proceedings of the National Academy of Sciences of the United States of America | 2008

DNA barcoding the floras of biodiversity hotspots

Renaud Lahaye; Michelle van der Bank; Diego Bogarín; Jorge Warner; Franco Pupulin; Guillaume Gigot; Olivier Maurin; Sylvie Duthoit; Timothy G. Barraclough; Vincent Savolainen

DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Darwin's abominable mystery: Insights from a supertree of the angiosperms

T. Jonathan Davies; Timothy G. Barraclough; Mark W. Chase; Pamela S. Soltis; Douglas E. Soltis; Vincent Savolainen

Angiosperms are among the major terrestrial radiations of life and a model group for studying patterns and processes of diversification. As a tool for future comparative studies, we compiled a supertree of angiosperm families from published phylogenetic studies. Sequence data from the plastid rbcL gene were used to estimate relative timing of branching events, calibrated by using robust fossil dates. The frequency of shifts in diversification rate is largely constant among time windows but with an apparent increase in diversification rates within the more recent time frames. Analyses of species numbers among families revealed that diversification rate is a labile attribute of lineages at all levels of the tree. An examination of the top 10 major shifts in diversification rates indicates they cannot easily be attributed to the action of a few key innovations but instead are consistent with a more complex process of diversification, reflecting the interactive effects of biological traits and the environment.


Science | 2007

A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation

Toby Hunt; Johannes Bergsten; Zuzana Levkaničová; Anna Papadopoulou; Oliver St. John; Ruth Wild; Peter M. Hammond; Dirk Ahrens; Michael Balke; Michael S. Caterino; Jesús Gómez-Zurita; Ignacio Ribera; Timothy G. Barraclough; Milada Bocakova; Ladislav Bocak; Alfried P. Vogler

Beetles represent almost one-fourth of all described species, and knowledge about their relationships and evolution adds to our understanding of biodiversity. We performed a comprehensive phylogenetic analysis of Coleoptera inferred from three genes and nearly 1900 species, representing more than 80% of the worlds recognized beetle families. We defined basal relationships in the Polyphaga supergroup, which contains over 300,000 species, and established five families as the earliest branching lineages. By dating the phylogeny, we found that the success of beetles is explained neither by exceptional net diversification rates nor by a predominant role of herbivory and the Cretaceous rise of angiosperms. Instead, the pre-Cretaceous origin of more than 100 present-day lineages suggests that beetle species richness is due to high survival of lineages and sustained diversification in a variety of niches.


Systematic Biology | 2009

Accelerated Species Inventory on Madagascar Using Coalescent-Based Models of Species Delineation

Michael T. Monaghan; Ruth Wild; Miranda Elliot; Tomochika Fujisawa; Michael Balke; Daegan J.G. Inward; David C. Lees; Ravo Ranaivosolo; Paul Eggleton; Timothy G. Barraclough; Alfried P. Vogler

High-throughput DNA sequencing has the potential to accelerate species discovery if it is able to recognize evolutionary entities from sequence data that are comparable to species. The general mixed Yule-coalescent (GMYC) model estimates the species boundary from DNA surveys by identifying independently evolving lineages as a transition from coalescent to speciation branching patterns on a phylogenetic tree. Applied here to 12 families from 4 orders of insects in Madagascar, we used the model to delineate 370 putative species from mitochondrial DNA sequence variation among 1614 individuals. These were compared with data from the nuclear genome and morphological identification and found to be highly congruent (98% and 94%). We developed a modified GMYC that allows for a variable transition from coalescent to speciation among lineages. This revised model increased the congruence with morphology (97%), suggesting that a variable threshold better reflects the clustering of sequence data into biological species. Local endemism was pronounced in all 5 insect groups. Most species (60-91%) and haplotypes (88-99%) were found at only 1 of the 5 study sites (40-1000 km apart). This pronounced endemism resulted in a 37% increase in species numbers using diagnostic nucleotides in a population aggregation analysis. Sample sizes between 7 and 10 individuals represented a threshold above which there was minimal increase in genetic diversity, broadly agreeing with coalescent theory and other empirical studies. Our results from > 1.4 Mb of empirical data suggest that the GMYC model captures species boundaries comparable to those from traditional methods without the need for prior hypotheses of population coherence. This provides a method of species discovery and biodiversity assessment using single-locus data from mixed or environmental samples while building a globally available taxonomic database for future identifications.


Systematic Biology | 2013

Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets

Tomochika Fujisawa; Timothy G. Barraclough

DNA barcoding-type studies assemble single-locus data from large samples of individuals and species, and have provided new kinds of data for evolutionary surveys of diversity. An important goal of many such studies is to delimit evolutionarily significant species units, especially in biodiversity surveys from environmental DNA samples. The Generalized Mixed Yule Coalescent (GMYC) method is a likelihood method for delimiting species by fitting within- and between-species branching models to reconstructed gene trees. Although the method has been widely used, it has not previously been described in detail or evaluated fully against simulations of alternative scenarios of true patterns of population variation and divergence between species. Here, we present important reformulations to the GMYC method as originally specified, and demonstrate its robustness to a range of departures from its simplifying assumptions. The main factor affecting the accuracy of delimitation is the mean population size of species relative to divergence times between them. Other departures from the model assumptions, such as varying population sizes among species, alternative scenarios for speciation and extinction, and population growth or subdivision within species, have relatively smaller effects. Our simulations demonstrate that support measures derived from the likelihood function provide a robust indication of when the model performs well and when it leads to inaccurate delimitations. Finally, the so-called single-threshold version of the method outperforms the multiple-threshold version of the method on simulated data: we argue that this might represent a fundamental limit due to the nature of evidence used to delimit species in this approach. Together with other studies comparing its performance relative to other methods, our findings support the robustness of GMYC as a tool for delimiting species when only single-locus information is available. [Clusters; coalescent; DNA; genealogical; neutral; speciation; species.]


Trends in Ecology and Evolution | 2001

Phylogenetics and speciation

Timothy G. Barraclough; Sean Nee

Species-level phylogenies derived from molecular data provide an indirect record of the speciation events that have led to extant species. This offers enormous potential for investigating the general causes and rates of speciation within clades. To make the most of this potential, we should ideally sample all the species in a higher group, such as a genus, ensure that those species reflect evolutionary entities within the group, and rule out the effects of other processes, such as extinction, as explanations for observed patterns. We discuss recent practical and theoretical advances in this area and outline how future work should benefit from incorporating data from genealogical and phylogeographical scales.


The American Naturalist | 2010

Speciation Has a Spatial Scale That Depends on Levels of Gene Flow

Yael Kisel; Timothy G. Barraclough

Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta‐analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad‐scale diversity patterns.


Systematic Biology | 2012

The Effect of Geographical Scale of Sampling on DNA Barcoding

Johannes Bergsten; David T. Bilton; Tomochika Fujisawa; Miranda Elliott; Michael T. Monaghan; Michael Balke; Lars Hendrich; Joja Geijer; Jan Herrmann; Garth N. Foster; Ignacio Ribera; Anders N. Nilsson; Timothy G. Barraclough; Alfried P. Vogler

Abstract Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcodings goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The proportion of query identifications considered uncertain (more than one species < 1% distance from query) escalated from zero at local, to 50% at continental scale. Finally, by resampling the most widely sampled species we show that even if samples are collected to maximize the geographical coverage, up to 70 individuals are required to sample 95% of intraspecific variation. The results show that the geographical scale of sampling has a critical impact on the global application of DNA barcoding. Scale-effects result from the relative importance of different processes determining the composition of regional species assemblages (dispersal and ecological assembly) and global clades (demography, speciation, and extinction). The incorporation of geographical information, where available, will be required to obtain identification rates at global scales equivalent to those in regional barcoding studies. Our result hence provides an impetus for both smarter barcoding tools and sprouting national barcoding initiatives—smaller geographical scales deliver higher accuracy.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Rate heterogeneity among lineages of tracheophytes: Integration of molecular and fossil data and evidence for molecular living fossils

Pamela S. Soltis; Douglas E. Soltis; Vincent Savolainen; Peter R. Crane; Timothy G. Barraclough

Many efforts to date evolutionary divergences by using a molecular clock have yielded age estimates that are grossly inconsistent with the paleontological evidence. Such discrepancies often are attributed to the inadequacy of the fossil record, but many potential sources of error can affect molecular-based estimates. In this study, we minimize the potential error caused by inaccurate topology and uncertain calibration times by using a well-supported tree, multiple genes, and multiple well-substantiated dates to explore the correspondence between the fossil record and molecular-based age estimates for major clades of tracheophytes. Age estimates varied because of gene effects, codon position, lineage effects, method of inferring branch lengths, and whether or not rate constancy was assumed. However, even methods designed to ameliorate the effects of rate heterogeneity among lineages could not accommodate the substantially slower rates observed in Marattia + Angiopteris and in the tree ferns. Both of these clades of ferns have undergone dramatic decelerations in their rates of molecular evolution and are “molecular living fossils,” consistent with their relative morphological stasis for the past 165–200 million years. Similar discrepancies between the fossil record and molecular-based age estimates noted in other studies may also be explained in part by violations of rate constancy among lineages.


Evolution | 2001

EVOLUTIONARY RATES AND SPECIES DIVERSITY IN FLOWERING PLANTS

Timothy G. Barraclough; Vincent Savolainen

Abstract Genetic change is a necessary component of speciation, but the relationship between rates of speciation and molecular evolution remains unclear. We use recent phylogenetic data to demonstrate a positive relationship between species numbers and the rate of neutral molecular evolution in flowering plants (in both plastid and nuclear genes). Rates of protein and morphological evolution also correlate with the neutral substitution rate, but not with species numbers. Our findings reveal a link between the rate of neutral molecular change within populations and the evolution of species diversity. Corresponding Editor: D. Baum

Collaboration


Dive into the Timothy G. Barraclough's collaboration.

Top Co-Authors

Avatar

Diego Fontaneto

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth A. Herniou

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Mark W. Chase

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alejandra Moreno-Letelier

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge