Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy G. Dinan is active.

Publication


Featured researches published by Timothy G. Dinan.


Nature Reviews Neuroscience | 2012

Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour

John F. Cryan; Timothy G. Dinan

Recent years have witnessed the rise of the gut microbiota as a major topic of research interest in biology. Studies are revealing how variations and changes in the composition of the gut microbiota influence normal physiology and contribute to diseases ranging from inflammation to obesity. Accumulating data now indicate that the gut microbiota also communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behaviour. Studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic bacteria or antibiotic drugs suggest a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain. Thus, the emerging concept of a microbiota–gut–brain axis suggests that modulation of the gut microbiota may be a tractable strategy for developing novel therapeutics for complex CNS disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve

Javier A. Bravo; Paul Forsythe; Marianne V. Chew; Emily Escaravage; Hélène M. Savignac; Timothy G. Dinan; John Bienenstock; John F. Cryan

There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Composition, variability, and temporal stability of the intestinal microbiota of the elderly

Marcus J. Claesson; Siobhán Cusack; Orla O'Sullivan; Rachel Greene-Diniz; Heleen de Weerd; E. Flannery; Julian Roberto Marchesi; Daniel Falush; Timothy G. Dinan; Gerald F. Fitzgerald; Catherine Stanton; Douwe van Sinderen; Michael B. O'Connor; Norma Harnedy; Kieran O'Connor; Colm Henry; Denis O'Mahony; Anthony P. Fitzgerald; Fergus Shanahan; Cillian Twomey; Colin Hill; R. Paul Ross; Paul W. O'Toole

Alterations in the human intestinal microbiota are linked to conditions including inflammatory bowel disease, irritable bowel syndrome, and obesity. The microbiota also undergoes substantial changes at the extremes of life, in infants and older people, the ramifications of which are still being explored. We applied pyrosequencing of over 40,000 16S rRNA gene V4 region amplicons per subject to characterize the fecal microbiota in 161 subjects aged 65 y and older and 9 younger control subjects. The microbiota of each individual subject constituted a unique profile that was separable from all others. In 68% of the individuals, the microbiota was dominated by phylum Bacteroides, with an average proportion of 57% across all 161 baseline samples. Phylum Firmicutes had an average proportion of 40%. The proportions of some phyla and genera associated with disease or health also varied dramatically, including Proteobacteria, Actinobacteria, and Faecalibacteria. The core microbiota of elderly subjects was distinct from that previously established for younger adults, with a greater proportion of Bacteroides spp. and distinct abundance patterns of Clostridium groups. Analyses of 26 fecal microbiota datasets from 3-month follow-up samples indicated that in 85% of the subjects, the microbiota composition was more like the corresponding time-0 sample than any other dataset. We conclude that the fecal microbiota of the elderly shows temporal stability over limited time in the majority of subjects but is characterized by unusual phylum proportions and extreme variability.


Biological Psychiatry | 2009

Early Life Stress Alters Behavior, Immunity, and Microbiota in Rats: Implications for Irritable Bowel Syndrome and Psychiatric Illnesses

Siobhain M. O'Mahony; Julian Roberto Marchesi; Paul Scully; Caroline E. Codling; Anne Marie Ceolho; Eamonn M. M. Quigley; John F. Cryan; Timothy G. Dinan

BACKGROUND Adverse early life events are associated with a maladaptive stress response system and might increase the vulnerability to disease in later life. Several disorders have been associated with early life stress, ranging from depression to irritable bowel syndrome. This makes the identification of the neurobiological substrates that are affected by adverse experiences in early life invaluable. METHODS The purpose of this study was to assess the effect of early life stress on the brain-gut axis. Male rat pups were stressed by separating them from their mothers for 3 hours daily between postnatal days 2-12. The control group was left undisturbed with their mothers. Behavior, immune response, stress sensitivity, visceral sensation, and fecal microbiota were analyzed. RESULTS The early life stress increased the number of fecal boli in response to a novel stress. Plasma corticosterone was increased in the maternally separated animals. An increase in the systemic immune response was noted in the stressed animals after an in vitro lipopolysaccharide challenge. Increased visceral sensation was seen in the stressed group. There was an alteration of the fecal microbiota when compared with the control group. CONCLUSIONS These results show that this form of early life stress results in an altered brain-gut axis and is therefore an important model for investigating potential mechanistic insights into stress-related disorders including depression and IBS.


Molecular Psychiatry | 2013

The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner

Gerard Clarke; S. Grenham; Paul Scully; Patrick Fitzgerald; Rachel D. Moloney; Fergus Shanahan; Timothy G. Dinan; John F. Cryan

Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome–gut–brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.


Neuroscience | 2010

Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression

Lieve Desbonnet; Lillian Garrett; Gerard Clarke; Barry Kiely; John F. Cryan; Timothy G. Dinan

The concept that intestinal microbial composition not only affects the health of the gut, but also influences centrally-mediated systems involved in mood, is supported by a growing body of literature. Despite the emergent interest in brain-gut communication and its possible role in the pathogenesis of psychiatric disorders such as depression, particularly subtypes with accompanying gastrointestinal (GI) symptoms, there are few studies dedicated to the search for therapeutic solutions that address both central and peripheral facets of these illnesses. This study aims to assess the potential benefits of the probiotic Bifidobacterium infantis in the rat maternal separation (MS) model, a paradigm that has proven to be of value in the study of stress-related GI and mood disorders. MS adult rat offsprings were chronically treated with bifidobacteria or citalopram and subjected to the forced swim test (FST) to assess motivational state. Cytokine concentrations in stimulated whole blood samples, monoamine levels in the brain, and central and peripheral hypothalamic-pituitary-adrenal (HPA) axis measures were also analysed. MS reduced swim behavior and increased immobility in the FST, decreased noradrenaline (NA) content in the brain, and enhanced peripheral interleukin (IL)-6 release and amygdala corticotrophin-releasing factor mRNA levels. Probiotic treatment resulted in normalization of the immune response, reversal of behavioral deficits, and restoration of basal NA concentrations in the brainstem. These findings point to a more influential role for bifidobacteria in neural function, and suggest that probiotics may have broader therapeutic applications than previously considered.


Frontiers in Physiology | 2011

Brain-gut-microbe communication in health and disease

Sue Grenham; Gerard Clarke; John F. Cryan; Timothy G. Dinan

Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal, and immunological levels. This construct is known as the brain–gut axis and is vital for maintaining homeostasis. Bacterial colonization of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signaling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity, and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain–gut–enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behavior. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain–gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the center of focus for some time to come.


Journal of Psychiatric Research | 2008

The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat

Lieve Desbonnet; Lillian Garrett; Gerard Clarke; John Bienenstock; Timothy G. Dinan

It is becoming increasingly apparent that probiotics are important to the health of the host. The absence of probiotic bacteria in the gut can have adverse effects not only locally in the gut, but has also been shown to affect central HPA and monoaminergic activity, features that have been implicated in the aetiology of depression. To evaluate the potential antidepressant properties of probiotics, we tested rats chronically treated with Bifidobacteria infantis in the forced swim test, and also assessed the effects on immune, neuroendocrine and central monoaminergic activity. Sprague-Dawley rats were treated for 14 days with B. infantis. Probiotic administration in naive rats had no effect on swim behaviours on day 3 or day 14 following the commencement of treatment. However, there was a significant attenuation of IFN-gamma, TNF-alpha and IL-6 cytokines following mitogen stimulation (p<0.05) in probiotic-treated rats relative to controls. Furthermore, there was a marked increase in plasma concentrations of tryptophan (p<0.005) and kynurenic acid (p<0.05) in the bifidobacteria-treated rats when compared to controls. Bifidobacteria treatment also resulted in a reduced 5-HIAA concentration in the frontal cortex and a decrease in DOPAC in the amygdaloid cortex. The attenuation of pro-inflammatory immune responses, and the elevation of the serotonergic precursor, tryptophan by bifidobacteria treatment, provides encouraging evidence in support of the proposition that this probiotic may possess antidepressant properties. However, these findings are preliminary and further investigation into the precise mechanisms involved, is warranted.


Behavioural Brain Research | 2015

Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

Siobhain M. O’Mahony; Gerard Clarke; Yuliya E. Borre; Timothy G. Dinan; John F. Cryan

The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.


Trends in Molecular Medicine | 2014

Microbiota and neurodevelopmental windows: implications for brain disorders

Yuliya E. Borre; Gerard W. O’Keeffe; Gerard Clarke; Catherine Stanton; Timothy G. Dinan; John F. Cryan

Gut microbiota is essential to human health, playing a major role in the bidirectional communication between the gastrointestinal tract and the central nervous system. The microbiota undergoes a vigorous process of development throughout the lifespan and establishes its symbiotic rapport with the host early in life. Early life perturbations of the developing gut microbiota can impact neurodevelopment and potentially lead to adverse mental health outcomes later in life. This review compares the parallel early development of the intestinal microbiota and the nervous system. The concept of parallel and interacting microbial-neural critical windows opens new avenues for developing novel microbiota-modulating based therapeutic interventions in early life to combat neurodevelopmental deficits and brain disorders.

Collaboration


Dive into the Timothy G. Dinan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fergus Shanahan

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jogin H. Thakore

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge