Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy G. Porch is active.

Publication


Featured researches published by Timothy G. Porch.


Archive | 2008

Genomics of Phaseolus Beans, a Major Source of Dietary Protein and Micronutrients in the Tropics

Paul Gepts; Francisco J.L. Aragão; Everaldo de Barros; Matthew W. Blair; R. P. V. Brondani; William J. Broughton; Incoronata Galasso; Gina Hernández; James Kami; Patricia Lariguet; Phillip E. McClean; Maeli Melotto; Phillip N. Miklas; Peter K. Pauls; Andrea Pedrosa-Harand; Timothy G. Porch; Federico Sánchez; Francesca Sparvoli; Kangfu Yu

Common bean is grown and consumed principally in developing countries in Latin America, Africa, and Asia. It is largely a subsistence crop eaten by its producers and, hence, is underestimated in production and commerce statistics. Common bean is a major source of dietary protein, which complements carbohydrate-rich sources such as rice, maize, and cassava. It is also a rich source of minerals, such as iron and zinc, and certain vitamins. Several large germplasm collections have been established, which contain large amounts of genetic diversity, including the five domesticated Phaseolus species and wild species, as well as an incipient stock collection. The genealogy and genetic diversity of P. vulgaris are among the best known in crop species through the systematic use of molecular markers, from seed proteins and isozymes to simple sequence repeats, and DNA sequences. Common bean exhibits a high level of genetic diversity, compared with other selfing species. A hierarchical organization into gene pools and ecogeographic races has been established. There are over 15 mapping populations that have been established to study the inheritance of agronomic traits in different locations. Most linkage maps have been correlated with the core map established in the BAT93 x Jalo EEP558 cross, which includes several hundreds of markers, including Restriction Fragment Length Polymorphisms, Random Amplified Polymorphic DNA, Amplified Fragment Length Polymorphisms, Short Sequence Repeats, Sequence Tagged Sites, and Target Region Amplification Polymorphisms. Over 30 individual genes for disease resistance and some 30 Quantitative Trait Loci for a broad range of agronomic traits have been tagged. Eleven BAC libraries have been developed in genotypes that represent key steps in the evolution before and after domestication of common bean, a unique resource among crops. Fluorescence in situ hybridization provides the first links between chromosomal and genetic maps. A gene index based on some P. vulgaris 21,000 expressed sequence tags (ESTs) has been developed. ESTs were developed from different genotypes, organs, and physiological conditions. They resolve currently in some 6,500–6,800 singletons and 2,900 contigs. An additional 20,000 embryonic P. coccineus ESTs provides an additional resource. Some 1,500 M2 Targeting Local Lesions In Genomes populations exist currently. Finally, transformation methods by biolistics and Agrobacterium have been developed, which can be applied for genetic engineering. Root transformation via A. rhizogenes is also possible. Thus, the Phaseomics community has laid a solid foundation towards its ultimate goal, namely the sequencing of the Phaseolus genome. These genomic resources are a much-needed source of additional markers of known map location for marker-assisted selection and the accelerated improvement of common bean cultivars.


Israel Journal of Plant Sciences | 2007

Induced mutants in common bean (Phaseolus vulgaris), and their potential use in nutrition quality breeding and gene discovery

Matthew W. Blair; Timothy G. Porch; Karen A. Cichy; Carlos H. Galeano; Patricia Lariguet; Clive Pankhurst; William J. Broughton

Common bean (Phaseolus vulgaris) is the most widely grown grain legume for human consumption and a major protein and mineral source in East Africa and Latin America. It is also a simple diploid species with a small genome (650 Mb). Despite its nutritional and economic importance and tractable genome, P. vulgaris has a paucity of mutant resources compared to other crops, making it difficult to perform genetic screening in the species. In this review we discuss recent studies on mutagenesis that aim to produce large-scale, mutagenized populations for generalized trait screening, as well as previous EMS (ethyl methane sulfonate) and gamma radiation mutants that were developed for biological nitrogen fixation or plant morphology traits. Mutant stocks in this crop will allow researchers to conduct both forward (systematic phenotypic screening) and reverse genetics (such as TILLING, or Targeting Induced Local Lesions In Genomes) experiments aimed at understanding the genes involved in various traits, including abiotic and biotic stress tolerance, grain quality, and nutritional value, as well as genes involved in symbiosis with Rhizobia. Thus, mutant stocks will be important for gene discovery and creating novel variability. In this review, we highlight applications of mutation breeding for nutritional quality improvement of common bean, giving examples of seed protein, mineral content, and tannin accumulation traits.


Euphytica | 2011

Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli

Mildred Zapata; James S. Beaver; Timothy G. Porch

The common bacterial blight pathogen [Xanthomonas axonopodis pv. phaseoli (Xap)] is a limiting factor for common bean (Phaseolus vulgaris L.) production worldwide and resistance to the pathogen in most commercial cultivars is inadequate. Variability in virulence of the bacterial pathogen has been observed in strains isolated from Puerto Rico and Central America. A few common bean lines show a differential reaction when inoculated with different Xap strains, indicating the presence of pathogenic races. In order to study the inheritance of resistance to common bacterial blight in common bean, a breeding line that showed a differential foliar reaction to Xap strains was selected and was crossed with a susceptible parent. The inheritance of resistance to one of the selected Xap races was determined by analysis of segregation patterns in the F1, F2, F3 and F4 generations from the cross between the resistant parent PR0313-58 and the susceptible parent ‘Rosada Nativa’. The F1, F2 and F3 generations were tested under greenhouse conditions. Resistant and susceptible F3:4 sister lines were tested in the field. The statistical analysis of all generations followed the model for a dominant resistance gene. The resistant phenotype was found to co-segregate with the SCAR SAP6 marker, located on LG 10. These results fit the hypothesis that resistance is controlled by a single dominant gene. The symbol proposed for the resistance gene is Xap-1 and for the bacterial race, XapV1.


Genetic Resources and Crop Evolution | 2017

Nutritional composition and cooking characteristics of tepary bean (Phaseolus acutifolius Gray) in comparison with common bean (Phaseolus vulgaris L.)

Timothy G. Porch; Karen A. Cichy; Weijia Wang; Mark A. Brick; James S. Beaver; Damaris Santana-Morant; Michael A. Grusak

Tepary bean is a highly abiotic stress tolerant orphan crop for which there has been limited research on its nutritional value and cooking characteristics. These are key aspects when considering the potential for broader adoption of tepary bean. Therefore, the goal of this study was to evaluate a large set of seed composition and cooking traits related to human nutrition using both landraces and breeding lines of domesticated tepary bean from replicated field trials and to compare the traits in tepary with those in common bean. Tepary bean showed reduced fat and ash concentration and higher sucrose concentration as compared to common bean. Of the twelve amino acids evaluated, only proline in one of the two trials was statistically different between the two species. There were statistically significant differences between tepary and common bean for the concentration of some elements in this study; however, the elemental concentrations fell within the range of those found for common bean in previous studies. The majority of tepary bean lines showed consistently short cooking times and a high percentage of seeds showed measurable water uptake, while some showed a hardshell trait (low water uptake) and longer cooking times. Principal component analysis on a subset of traits showed a distinct group of common beans and two tepary bean groups that were divided on the basis of several agronomic, cooking, and elemental composition traits. Tepary bean, as with other pulses, is a highly nutritious crop with the range of composition and cooking characteristics similar to those of common bean. The variability for seed composition and cooking traits found within tepary bean can be exploited for its improvement.


Plant Disease | 2016

Isolates of Rhizoctonia solani Can Produce both Web Blight and Root Rot Symptoms in Common Bean (Phaseolus vulgaris L.)

Suheidy Valentín Torres; María M. Vargas; Graciela Godoy-Lutz; Timothy G. Porch; James S. Beaver

In common bean (Phaseolus vulgaris L.), Rhizoctonia solani Kühn is an important pathogen causing web blight (WB) in the tropics, and it is also a soilborne pathogen causing root rot (RR) worldwide. This pathogen is a species complex classified into 14 anastomosis groups (AG). AG 1-IA, AG 1-IB, AG 1-IE, AG 1-IF, AG 2-2, and AG 4 have been reported to cause WB of the aboveground structures of the plant, while AG 4 and AG 2-2 have been associated with RR. There is limited information, however, concerning the ability of particular isolates of specific AG to cause both diseases in common bean. Nine R. solani isolates, including three AG 1 and three AG 4 WB isolates and three AG 4 RR isolates collected from both leaves and roots, respectively, of common bean in Puerto Rico, were used to evaluate the response of 12 common bean genotypes to WB inoculated using a detached-leaf method and to RR inoculated using a solution suspension of R. solani mycelia in the greenhouse. All R. solani isolates were able to induce both RR and WB symptoms. RR readings were generally more severe than the WB readings. The RR isolate RR1 (AG 4) produced the most severe RR scores. A few bean lines had mean RR scores ≤4.4 for specific R. solani isolates on a scale of 1 to 9, with 1 representing resistant and 9 highly susceptible. However, all of the bean lines had mean RR scores ≥5.0 when inoculated with the isolates RR1, RR2, and RR3, which were determined to be AG 4 in this study. Significant line-isolate interactions were observed for the WB and RR inoculations for the three planting dates, suggesting a differential response of the common bean lines to the pathogen. This genotypic interaction may require bean breeders and pathologists to monitor the virulence patterns of R. solani in specific growing environments, while the compatibility of specific R. solani isolates to both aerial and root tissue needs to be considered for disease control strategies.


African Journal of Plant Science | 2016

Characterization of the common bean host and Pseudocercospora griseola, the causative agent of angular leaf spot disease in Tanzania

Luseko Amos Chilagane; Susan Nchimbi-Msolla; Paul Mbogo Kusolwa; Timothy G. Porch; Luz Miryam Serrato Diaz; George Muhamba Tryphone

Angular leafspot (ALS), caused by the fungus, Pseudocercospora griseola, is one of the most important disease of common bean in Tanzania. Breeding for resistance to this disease is complicated by the variable nature of the pathogen. In Tanzania, a thorough analysis of the variability of this pathogen is lacking which limits breeding for durable resistance. This work aimed at characterizing P. griseola in relation to its host in Tanzania. A sample collection of both P. griseola and common bean was conducted in the 2013 and 2014 growing seasons from nine regions. Single spore isolation was performed for P. griseola isolates and DNA was extracted from both P. griseola mycelium and bean leaves from which the pathogen was collected. For characterization of the gene pool origin of the host, Phaseolin DNA marker was evaluated and for the pathogen, the Internal Transcribed Spacer region (ITS) and the Actin gene sequences were evaluated. Phylogenetic analysis showed the presence of 69.7% Andean and 30.3% Mesoamerican strains of P. griseola in Tanzania. The common bean host genotypes showed a similar distribution with 84.2% Andean and 15.8% Mesoamerican. In both cases, Andean strains of the pathogen and Andean bean genotypes outnumbered Mesoamerican. In relation to the common bean genotypes, Andean genotypes were more susceptible to ALS as compared to Mesoamerican genotypes. There were few strains that were of Andean origin but were pathogenic on Mesoamerican common bean genotypes, a group that has previously been termed Afro-Andean. Geographically, most of the regions of Tanzania had only Andean strains except for Kagera where 60% were Mesoamerican strains, and in Arusha and Tanga, where 50 and 33% were Mesoamerican, respectively. Only three regions, Kagera, Mbeya and Rukwa, were found to grow Mesoamerican beans. The findings of this study are important in setting basic objectives for breeding for angular leaf spot disease in Tanzania. Key words: Actin gene, angular leaf spot (ALS), Internal Transcribed Spacer region (ITS), Phaseolin protein, Phaseolus vulgaris.


Journal of The American Society for Horticultural Science | 2009

Generation of a Mutant Population for TILLING Common Bean Genotype BAT 93

Timothy G. Porch; Matthew W. Blair; Patricia Lariguet; Carlos H. Galeano; Clive Pankhurst; William J. Broughton


Crop Science | 2015

A Phaseolus vulgaris Diversity Panel for Andean Bean Improvement

Karen A. Cichy; Timothy G. Porch; James S. Beaver; Perry B. Cregan; Deidré Fourie; Raymond P. Glahn; Michael A. Grusak; Kelvin Kamfwa; Dennis N. Katuuramu; Phil McClean; Eninka Mndolwa; Susan Nchimbi-Msolla; M. A. Pastor-Corrales; Phillip N. Miklas


Functional Plant Biology | 2011

Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris)

Phillip E. McClean; Jimmy Burridge; Stephen E. Beebe; Idupulapati M. Rao; Timothy G. Porch


Journal of Plant Registrations | 2008

Registration of 'Verano' White Bean

James S. Beaver; Timothy G. Porch; Mildred Zapata

Collaboration


Dive into the Timothy G. Porch's collaboration.

Top Co-Authors

Avatar

James S. Beaver

University of Puerto Rico

View shared research outputs
Top Co-Authors

Avatar

Karen A. Cichy

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Grusak

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Phillip N. Miklas

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James D. Kelly

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

James R. Smith

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mark A. Brick

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge