Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy Grocott is active.

Publication


Featured researches published by Timothy Grocott.


Developmental Biology | 2012

The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective.

Timothy Grocott; Monica Tambalo; Andrea Streit

In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.


Developmental Dynamics | 2004

Matrix metalloproteinase genes in Xenopus development

Michael Harrison; Muhammad Abu-Elmagd; Timothy Grocott; Clara Yates; Jelena Gavrilovic; Grant N. Wheeler

Matrix metalloproteinases (MMPs) are a large family of proteins in vertebrates, consisting of over 24 genes in humans, only a few of which have been identified in Xenopus. Three genes coding for MMPs in Xenopus have been identified and their expression studied during development. The membrane‐bound XMMP‐14 and ‐15 (XMT1‐MMP and XMT2‐MMP) both showed restricted expression patterns, the former principally localising to cranial neural crest tissues and the latter to the epidermis of the embryo. XMMP‐7 codes for an MMP that lacks the hemopexin‐like domain. It is expressed exclusively in macrophages or other myeloid cell types from early in development. Developmental Dynamics 231:214–220, 2004.


Biochemical Society Transactions | 2006

Reversible ubiquitination regulates the Smad/TGF-β signalling pathway

S.J. Wicks; Timothy Grocott; Katherine Haros; Marjorie Maillard; P. ten Dijke; Andrew Chantry

TGF-β (transforming growth factor-β) signals through serine/threonine kinase receptors and intracellular Smad transcription factors. An important regulatory step involves specific ubiquitination by Smurfs (Smad–ubiquitin regulatory factors), members of the HECT (homologous to E6-associated protein C-terminus) ubiquitin ligase family, which mediate the proteasomal degradation of Smads and/or receptors. Recently, we have defined a novel interaction between Smads and UCH37 (ubiquitin C-terminal hydrolase 37), a DUB (de-ubiquitinating enzyme) that could potentially counteract Smurf-mediated ubiquitination. We have demonstrated specific interactions between UCH37 and inhibitory Smad7, as well as weaker associations with Smad2 and Smad3. Importantly, Smad7 can act as an adaptor able to recruit UCH37 to the type I TGF-β receptor. Consequently, UCH37 dramatically up-regulates TGF-β-dependent gene expression by de-ubiquitinating and stabilizing the type I TGF-β receptor. Our findings suggest that competing effects of ubiquitin ligases and DUBs in complex with Smad7 can serve to fine-tune responses to TGF-βs under various physiological and pathological conditions. Studies are currently under way using activity-based HA (haemagglutinin)-tagged ubiquitin probes to identify the full spectrum of DUBs that impact on Smad/TGF-β signalling activity.


Nature Communications | 2011

Neural crest cells organize the eye via TGF-β and canonical Wnt signalling

Timothy Grocott; Samuel Johnson; Andrew P. Bailey; Andrea Streit

In vertebrates, the lens and retina arise from different embryonic tissues raising the question of how they are aligned to form a functional eye. Neural crest cells are crucial for this process: in their absence, ectopic lenses develop far from the retina. Here we show, using the chick as a model system, that neural crest-derived transforming growth factor-βs activate both Smad3 and canonical Wnt signalling in the adjacent ectoderm to position the lens next to the retina. They do so by controlling Pax6 activity: although Smad3 may inhibit Pax6 protein function, its sustained downregulation requires transcriptional repression by Wnt-initiated β-catenin. We propose that the same neural crest-dependent signalling mechanism is used repeatedly to integrate different components of the eye and suggest a general role for the neural crest in coordinating central and peripheral parts of the sensory nervous system.


Developmental Biology | 2010

Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear.

Nicolas A.D. Christophorou; Michael Mende; Laura Lleras-Forero; Timothy Grocott; Andrea Streit

Crucial components of the vertebrate eye, ear and nose develop from discrete patches of surface epithelium, called placodes, which fold into spheroids and undergo complex morphogenesis. Little is known about how the changes in cell and tissue shapes are coordinated with the acquisition of cell fates. Here we explore whether these processes are regulated by common transcriptional mechanisms in the developing ear. After specification, inner ear precursors elongate to form the placode, which invaginates and is transformed into the complex structure of the adult ear. We show that the transcription factor Pax2 plays a key role in coordinating otic fate and placode morphogenesis, but appears to regulate each process independently. In the absence of Pax2, otic progenitors not only lose otic marker expression, but also fail to elongate due to the loss of apically localised N-cadherin and N-CAM. In the absence of either N-cadherin or N-CAM otic cells lose apical cell–cell contact and their epithelial shape. While misexpression of Pax2 leads to ectopic activation of both adhesion molecules, it is not sufficient to confer otic identity. These observations suggest that Pax2 controls cell shape independently from cell identity and thus acts as coordinator for these processes.


Nucleic Acids Research | 2007

The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter

Timothy Grocott; Victoria Frost; Marjorie Maillard; Terje Johansen; Grant N. Wheeler; Lucy J. Dawes; I. Michael Wormstone; Andrew Chantry

Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFβ superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFβ on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24 h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFβ receptor and TGFβ ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFβ receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFβ/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Smad1 transcription factor integrates BMP2 and Wnt3a signals in migrating cardiac progenitor cells

Junfang Song; James McColl; Esther Camp; Niki Kennerley; Gi Fay Mok; Dominique McCormick; Timothy Grocott; Grant N. Wheeler; Andrea Münsterberg

Significance Prospective cardiac cells emerge during gastrulation and undergo long-range migration toward the ventral midline, where they fuse to give rise to a single contractile tube, which subsequently undergoes complex morphogenesis. How cardiac progenitor cells are guided in their movement by extrinsic signals is still enigmatic. We previously identified wingless-type family member (Wnt) 3a as an important guidance signal. Here we used live video microscopy in chick embryos to uncover a role for bone morphogenetic proteins (BMPs) in the control of cardiac progenitor cell migration. Functional approaches, complementation, and rescue experiments reveal cooperation between BMP signalling and the Wnt/glycogen synthase kinase 3 beta pathway: both converge to stabilize activated SMA and MAD related protein. Insights into the molecular integration of signaling pathways in migrating cells affect our understanding of cardiac malformations during embryo development. In vertebrate embryos, cardiac progenitor cells (CPCs) undergo long-range migration after emerging from the primitive streak during gastrulation. Together with other mesoderm progenitors, they migrate laterally and then toward the ventral midline, where they form the heart. Signals controlling the migration of different progenitor cell populations during gastrulation are poorly understood. Several pathways are involved in the epithelial-to-mesenchymal transition and ingression of mesoderm cells through the primitive streak, including fibroblast growth factors and wingless-type family members (Wnt). Here we focus on early CPC migration and use live video microscopy in chicken embryos to demonstrate a role for bone morphogenetic protein (BMP)/SMA and MAD related (Smad) signaling. We identify an interaction of BMP and Wnt/glycogen synthase kinase 3 beta (GSK3β) pathways via the differential phosphorylation of Smad1. Increased BMP2 activity altered migration trajectories of prospective cardiac cells and resulted in their lateral displacement and ectopic differentiation, as they failed to reach the ventral midline. Constitutively active BMP receptors or constitutively active Smad1 mimicked this phenotype, suggesting a cell autonomous response. Expression of GSK3β, which promotes the turnover of active Smad1, rescued the BMP-induced migration phenotype. Conversely, expression of GSK3β-resistant Smad1 resulted in aberrant CPC migration trajectories. De-repression of GSK3β by dominant negative Wnt3a restored normal migration patterns in the presence of high BMP activity. The data indicate the convergence of BMP and Wnt pathways on Smad1 during the early migration of prospective cardiac cells. Overall, we reveal molecular mechanisms that contribute to the emerging paradigm of signaling pathway integration in embryo development.


Critical Reviews in Biochemistry and Molecular Biology | 2008

Self-Regulated Pax Gene Expression and Modulation by the TGFβ Superfamily

Victoria Frost; Timothy Grocott; Michael R. Eccles; Andrew Chantry

The mammalian Pax gene family encode a set of paired-domain transcription factors which play essential roles in regulating proliferation, differentiation, apoptosis, cell migration, and stem-cell maintenance. Pax gene expression is necessarily tightly controlled and is associated with the demarcation of boundaries during tissue development and specification. Auto- and inter-regulation are mechanisms frequently employed to achieve precise control of Pax expression domains in a variety of tissues including the eye, central nervous system, kidney, pancreas, skeletal system, muscle, tooth, and thymus. Furthermore, aberrant Pax expression is linked to several diseases and causally associated with certain tumors. An increasing number of studies also relate patterns of Pax expression to signaling by members of the TGFβ superfamily and, in some instances, this is due to disruption of Pax gene auto-regulation. Here, we review the current evidence highlighting functional and mechanistic overlap between TGFβ signaling and Pax-mediated gene transcription. We conclude that self-regulation of Pax gene expression coupled with modulation by the TGFβ superfamily represents a signaling axis that is frequently employed during development and disease to drive normal tissue growth, differentiation and homeostasis.


Genesis | 2013

Experimental approaches for gene regulatory network construction: The chick as a model system

Andrea Streit; Monica Tambalo; Jingchen Chen; Timothy Grocott; Maryam Anwar; Alona Sosinsky; Claudio D. Stern

Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic “wiring diagrams” that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system. genesis 51:296–310, 2012.


Development | 2017

Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction

Mark Hintze; Ravindra Singh Prajapati; Monica Tambalo; Nicolas A.D. Christophorou; Maryam Anwar; Timothy Grocott; Andrea Streit

In vertebrates, cranial placodes contribute to all sense organs and sensory ganglia and arise from a common pool of Six1/Eya2+ progenitors. Here we dissect the events that specify ectodermal cells as placode progenitors using newly identified genes upstream of the Six/Eya complex. We show in chick that two different tissues, namely the lateral head mesoderm and the prechordal mesendoderm, gradually induce placode progenitors: cells pass through successive transcriptional states, each identified by distinct factors and controlled by different signals. Both tissues initiate a common transcriptional state but over time impart regional character, with the acquisition of anterior identity dependent on Shh signalling. Using a network inference approach we predict the regulatory relationships among newly identified transcription factors and verify predicted links in knockdown experiments. Based on this analysis we propose a new model for placode progenitor induction, in which the initial induction of a generic transcriptional state precedes regional divergence. Summary: A new model is presented whereby multiple mesodermal tissues and signalling centres, rather than a single organizer, mediate the induction and patterning of chick sensory placodes.

Collaboration


Dive into the Timothy Grocott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Chantry

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge