Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy J. Guzi is active.

Publication


Featured researches published by Timothy J. Guzi.


Molecular Cancer Therapeutics | 2010

Dinaciclib (SCH 727965), a Novel and Potent Cyclin-Dependent Kinase Inhibitor

David Parry; Timothy J. Guzi; Frances Shanahan; Nicole Davis; Deepa Prabhavalkar; Derek Wiswell; Wolfgang Seghezzi; Kamil Paruch; Michael P. Dwyer; Ronald J. Doll; Amin A. Nomeir; William T. Windsor; Thierry O. Fischmann; Yaolin Wang; Martin Oft; Taiying Chen; Paul Kirschmeier; Emma Lees

Cyclin-dependent kinases (CDK) are key positive regulators of cell cycle progression and attractive targets in oncology. SCH 727965 inhibits CDK2, CDK5, CDK1, and CDK9 activity in vitro with IC50 values of 1, 1, 3, and 4 nmol/L, respectively. SCH 727965 was selected as a clinical candidate using a functional screen in vivo that integrated both efficacy and safety parameters. Compared with flavopiridol, SCH 727965 exhibits superior activity with an improved therapeutic index. In cell-based assays, SCH 727965 completely suppressed retinoblastoma phosphorylation, which correlated with apoptosis onset and total inhibition of bromodeoxyuridine incorporation in >100 tumor cell lines of diverse origin and background. Moreover, short exposures to SCH 727965 were sufficient for long-lasting cellular effects. SCH 727965 induced regression of established solid tumors in a range of mouse models following intermittent scheduling of doses below the maximally tolerated level. This was associated with modulation of pharmacodynamic biomarkers in skin punch biopsies and rapidly reversible, mechanism-based effects on hematologic parameters. These results suggest that SCH 727965 is a potent and selective CDK inhibitor and a novel cytotoxic agent. Mol Cancer Ther; 9(8); 2344–53. ©2010 AACR.


Molecular Cancer Therapeutics | 2011

Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified Via High Content Screening

Timothy J. Guzi; Kamil Paruch; Michael P. Dwyer; Marc Labroli; Frances Shanahan; Nicole Davis; Lorena Taricani; Derek Wiswell; Wolfgang Seghezzi; Ervin Penaflor; Bhagyashree Bhagwat; Wei Wang; Danling Gu; Yunsheng Hsieh; Suining Lee; Ming Liu; David Parry

Checkpoint kinase 1 (CHK1) is an essential serine/threonine kinase that responds to DNA damage and stalled DNA replication. CHK1 is essential for maintenance of replication fork viability during exposure to DNA antimetabolites. In human tumor cell lines, ablation of CHK1 function during antimetabolite exposure led to accumulation of double-strand DNA breaks and cell death. Here, we extend these observations and confirm ablation of CHK2 does not contribute to these phenotypes and may diminish them. Furthermore, concomitant suppression of cyclin-dependent kinase (CDK) activity is sufficient to completely antagonize the desired CHK1 ablation phenotypes. These mechanism-based observations prompted the development of a high-content, cell-based screen for γ-H2AX induction, a surrogate marker for double-strand DNA breaks. This mechanism-based functional approach was used to optimize small molecule inhibitors of CHK1. Specifically, the assay was used to mechanistically define the optimal in-cell profile with compounds exhibiting varying degrees of CHK1, CHK2, and CDK selectivity. Using this approach, SCH 900776 was identified as a highly potent and functionally optimal CHK1 inhibitor with minimal intrinsic antagonistic properties. SCH 900776 exposure phenocopies short interfering RNA-mediated CHK1 ablation and interacts synergistically with DNA antimetabolite agents in vitro and in vivo to selectively induce dsDNA breaks and cell death in tumor cell backgrounds. Mol Cancer Ther; 10(4); 591–602. ©2011 AACR.


Cancer Discovery | 2015

First Selective Small Molecule Inhibitor of FGFR4 for the Treatment of Hepatocellular Carcinomas with an Activated FGFR4 Signaling Pathway

Margit Hagel; Chandra Miduturu; Michael Sheets; Nooreen Rubin; Weifan Weng; Nicolas Stransky; Neil Bifulco; Joseph L. Kim; Brian L. Hodous; Natasja Brooijmans; Adam Shutes; Christopher Winter; Christoph Lengauer; Nancy E. Kohl; Timothy J. Guzi

UNLABELLED Aberrant signaling through the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR 4) signaling complex has been shown to cause hepatocellular carcinoma (HCC) in mice and has been implicated to play a similar role in humans. We have developed BLU9931, a potent and irreversible small-molecule inhibitor of FGFR4, as a targeted therapy to treat patients with HCC whose tumors have an activated FGFR4 signaling pathway. BLU9931 is exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. BLU9931 shows remarkable antitumor activity in mice bearing an HCC tumor xenograft that overexpresses FGF19 due to amplification as well as a liver tumor xenograft that overexpresses FGF19 mRNA but lacks FGF19 amplification. Approximately one third of patients with HCC whose tumors express FGF19 together with FGFR4 and its coreceptor klotho β (KLB) could potentially respond to treatment with an FGFR4 inhibitor. These findings are the first demonstration of a therapeutic strategy that targets a subset of patients with HCC. SIGNIFICANCE This article documents the discovery of BLU9931, a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity. BLU9931 is efficacious in tumors with an intact FGFR4 signaling pathway that includes FGF19, FGFR4, and KLB. BLU9931 is the first FGFR4-selective molecule for the treatment of patients with HCC with aberrant FGFR4 signaling.


ACS Medicinal Chemistry Letters | 2010

Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases

Kamil Paruch; Michael P. Dwyer; Carmen Alvarez; Courtney Brown; Tin-Yau Chan; Ronald J. Doll; Kerry Keertikar; Chad E. Knutson; Brian Mckittrick; Jocelyn Rivera; Randall R. Rossman; Greg Tucker; Thierry O. Fischmann; Alan Hruza; Vincent Madison; Amin A. Nomeir; Yaolin Wang; Paul Kirschmeier; Emma Lees; David Parry; Nicole Sgambellone; Wolfgang Seghezzi; Lesley Schultz; Frances Shanahan; Derek Wiswell; Xiaoying Xu; Quiao Zhou; Ray Anthony James; Vidyadhar M. Paradkar; Haengsoon Park

Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of pyrazolo[1,5-a]pyrimidine-based CHK1 inhibitors: A template-based approach-Part 2.

Michael P. Dwyer; Kamil Paruch; Marc Labroli; Carmen Alvarez; Kerry Keertikar; Cory Poker; Randall R. Rossman; Thierry O. Fischmann; Jose S. Duca; Vincent Madison; David Parry; Nicole Davis; Wolfgang Seghezzi; Derek Wiswell; Timothy J. Guzi

Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2010

Design, synthesis and SAR of thienopyridines as potent CHK1 inhibitors.

Lianyun Zhao; Yingxin Zhang; Chaoyang Dai; Timothy J. Guzi; Derek Wiswell; Wolfgang Seghezzi; David Parry; Thierry O. Fischmann; M. Arshad Siddiqui

A novel series of CHK1 inhibitors based on thienopyridine template has been designed and synthesized. These inhibitors maintain critical hydrogen bonding with the hinge and conserved water in the ATP binding site. Several compounds show single digit nanomolar CHK1 activities. Compound 70 shows excellent enzymatic activity of 1 nM.


Cell Cycle | 2010

Phenotypic enhancement of thymidylate synthetase pathway inhibitors following ablation of Neil1 DNA glycosylase/lyase.

Lorena Taricani; Frances Shanahan; Rob H. Pierce; Timothy J. Guzi; David A.D. Parry

Inhibition of thymidine biosynthesis is a clinically-validated therapeutic approach for multiple cancers. Inhibition of thymidylate synthetase (TS) leads to a decrease in cellular TTP levels, replication stress and increased genomic incorporation of uridine (dUMP). Thus, inhibitors of this pathway (such as methotrexate) can drive a multitude of downstream cell cycle checkpoint and DNA repair processes. Genomic dUMP is recognized by the base excision repair (BER) pathway. Using a synthetic lethal siRNA-screening approach, we systematically screened for components of BER that, when ablated, enhanced methotrexate response in a high content γ-H2A.X bioassay. We observed specific ablation of the mixed function DNA glycosylase/lyase Neil1 phenotypically enhanced several inhibitors of thymidine biosynthesis, as well as cellular phenotypes downstream of gemcitabine, cytarabine and clofarabine exposure. These synthetic lethal interactions were associated with significantly enhanced accumulation of γ-H2A.X and improved growth inhibition. Significantly, following TS pathway inhibition, addition of exogenous dTTP complemented the primary Neil1 γ-H2A.X phenotypes. Similarly, co-depletion of Neil1 with Cdc45, Cdc6, Cdc7 or DNA polymerase β (PolB) suppressed Neil1 phenotypes. Conversely, co-depletion of Neil1 with the Rad17, Rad9 ATR, ATM and DNA-PK checkpoint/sensor proteins appears primarily epistatic to Neil1. These data suggest Neil1 may be a critical mediator of BER of incorporated dUMP following TS pathway inhibition


Bioorganic & Medicinal Chemistry Letters | 2014

Substituted piperidines as hdm2 inhibitors

Yao Ma; Manami Shizuka; Timothy J. Guzi; Yuan Liu; Yuan Tian; Brian R. Lahue; Craig R. Gibeau; Gerald W. Shipps; Yaolin Wang; Stephane Bogen; Latha G. Nair; Weidong Pan; Mark A. McCoy; Matthew E. Voss; Margarita Kirova-Snover; W. Bent Clayton

Novel small molecule HDM2 inhibitor, substituted piperidine, was identified. Initial SAR study indicated potential for several position optimizations. Additional potency enhancement was achieved by introducing a sidechain off the aromatic ring. DMPK study of one of the active compounds has shown a moderate oral PK and reasonable bioavailability.


ACS Medicinal Chemistry Letters | 2014

Pivotal Role of an Aliphatic Side Chain in the Development of an HDM2 Inhibitor

Yao Ma; Brian R. Lahue; Craig R. Gibeau; Gerald W. Shipps; Stephane L. Bogen; Yaolin Wang; Zhuyan Guo; Timothy J. Guzi

Introduction of an aliphatic side chain to a key position of a novel piperidine-based HDM2 inhibitor scaffold resulted in significant potency gains, enabling further series progression.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: A template-based approach.

Michael P. Dwyer; Kartik M. Keertikar; Kamil Paruch; Carmen Alvarez; Marc Labroli; Cory Poker; Thierry O. Fischmann; Rosemary Mayer-Ezell; Richard Bond; Yan Wang; Rita Azevedo; Timothy J. Guzi

The synthesis and hit-to-lead SAR development from a pyrazolo[1,5-a]pyrimidine-derived hit 5 to the identification of a series of potent, pan-Pim inhibitors such as 11j are described.

Collaboration


Dive into the Timothy J. Guzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge