Timothy J. Kurtti
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Kurtti.
The New England Journal of Medicine | 1996
Jesse L. Goodman; Curtis M. Nelson; Blaise Vitale; John E. Madigan; J. Stephen Dumler; Timothy J. Kurtti; Ulrike G. Munderloh
BACKGROUND Human granulocytic ehrlichiosis is a potentially fatal tick-borne infection that has recently been described. This acute febrile illness is characterized by myalgias, headache, thrombocytopenia, and elevated serum aminotransferase levels. The disease is difficult to diagnose because the symptoms are non-specific, intraleukocytic inclusions (morulae) may not be seen, and the serologic results are often initially negative. Little is known about the causative agent because it has never been cultivated. METHODS We studied three patients with symptoms and laboratory findings suggestive of human granulocytic ehrlichiosis, including unexplained fever after probable exposure to ticks, granulocytopenia, and thrombocytopenia. Peripheral blood was examined for ehrlichia microscopically and with use of the polymerase chain reaction (PCR). Blood was inoculated into cultures of HL60 cells (a line of human promyelocytic leukemia cells), and the cultures were monitored for infection by Giemsa staining and PCR. RESULTS Blood from the three patients, only one of whom had inclusions suggestive of ehrlichia in neutrophils, was positive for human granulocytic ehrlichiosis on PCR. Blood from all three patients was inoculated into HL60 cell cultures and caused infection, with intracellular organisms visualized as early as 5 days after inoculation and cell lysis occurring within 12 to 14 days. The identity of the cultured organisms was confirmed by immunofluorescence microscopy, PCR analysis, and DNA sequencing. DNA from the infected cells was sequenced in regions of the 16S ribosomal gene reported to differ between the agent of human granulocytic ehrlichiosis and closely related species, including Ehrlichia equi and E. phagocytophila which cause infection in animals. The sequences from all three human isolates were identical and differed from the strain of E. equi studied in having guanine rather than adenine at nucleotide 84. CONCLUSIONS We describe the cultivation of the agent of human granulocytic ehrlichiosis in cell culture. The ability to isolate this organism should lead to a better understanding of the biology, treatment, and epidemiology of this emerging infection.
Journal of Parasitology | 1994
Ulrike G. Munderloh; Yan Liu; Maming Wang; Chunsheng Chen; Timothy J. Kurtti
Interest in tick-borne pathogens has been enhanced by the emergence of Lyme disease and, more recently, human and animal ehrlichioses. In order to facilitate investigations of the vector phase of tick-borne disease agents in vitro, several new cell lines derived from embryonated eggs of northern (IDE lines) and southern (ISE lines) populations of the tick Ixodes scapularis were developed. The establishment and characteristics of 4 IDE (IDE1, 2, 8, and 12) and 2 ISE (ISE5 and 18) lines were described. Primary cultures were initiated in L-15B medium at 31 C from a single egg mass each and established lines developed a morphologically distinct phenotype. Myoblasts were present during the first year after isolation in several lines as isolated clusters or sheets covering the whole flask. Cell line extracts resolved by isoelectric focusing were characterized for 3 isozymes (lactate dehydrogenase, malate dehydrogenase, and malic enzyme). The combined banding patterns allowed discrimination between Ixodes cell lines and a Rhipicephalus appendiculatus cell line. Two lines, i.e., ISE5 and ISE18, had unique isozyme bands. Chromosome numbers and morphology conformed to those described from tissue squashes of I. scapularis.
Applied and Environmental Microbiology | 2002
Jason A. Simser; Ann T. Palmer; Volker Fingerle; Bettina Wilske; Timothy J. Kurtti; Ulrike G. Munderloh
ABSTRACT We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.
Experimental and Applied Acarology | 1989
Ulrike G. Munderloh; Timothy J. Kurtti
We examined the effectiveness of bovine cholesterol concentrate in reducing the high level (10–20%) of fetal bovine serum (FBS) necessary to promote tick cell growth in vitro. Tick cell lines isolated from embryos ofAnocentor nitens (ANE 58),Boophilus microplus (BME 26), andRhipicephalus appendiculatus (RAE 25) were used. They were incubated in L-15 (BME 26) or L-15B (ANE 58 and RAE 25) supplemented with 10% tryptose phosphate broth (TPB), 5% (ANE 58 and BME 26) or 3% FBS, 10–90 μm/ml cholesterol. A concentration of 10 μg/ml cholesterol stimulated the growth rate of all three lines but more than 30 μg/ml depressed growth in ANE 58 and RAE 25 cells, while multiplication of BME 26 cells was enhanced by all cholesterol concentrations tested. All three lines could be continuously grown in 5% FBS, provided that 10 μg/ml cholesterol was included.Nutrients added to L-15 in the formulation of L-15B were tested singly or in combination for their ability to support tick cell growth in medium supplemented only with 5% FBS and 10 μm/ml cholesterol. In L-15 alone, RAE 25 cells did not multiply. Adding glucose (Glc), glutamic acid (Glu), or α-ketoglutaric acid (αK) had little or no effect, and the same was true for combinations of Glc plus α K, aspartic acid (Asp) plus proline (Pro) and glutamine (Gln), and minerals plus vitamins (MV). When Asp, Gln, Pro, and αK were combined with Glc and/or MV and added to L-15, there was appreciable growth stimulation, but best results were obtained when Glu was also included. In this medium, i.e., L-15B with 5% FBS and 10 μ/ml cholesterol, lines BME 26 and RAE 25 could be continuously subcultured.
BMC Genomics | 2008
Curtis M. Nelson; Michael J. Herron; Roderick F. Felsheim; Brian Schloeder; Suzanne Grindle; Adela S. Oliva Chávez; Timothy J. Kurtti; Ulrike G. Munderloh
BackgroundAnaplasma phagocytophilum (Ap) is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6) and pathogenesis (human; HL-60 and HMEC-1).ResultsDetailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6) and the human (HL-60 and HMEC-1) cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system) showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins) paralogs (of 114 total), through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6.ConclusionUsing these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.
BMC Biotechnology | 2006
Roderick F. Felsheim; Michael J. Herron; Curtis M. Nelson; Nicole Y. Burkhardt; Anthony F. Barbet; Timothy J. Kurtti; Ulrike G. Munderloh
BackgroundTick-borne pathogens cause emerging zoonoses, and include fastidious organisms such as Anaplasma phagocytophilum. Because of their obligate intracellular nature, methods for mutagenesis and transformation have not been available.ResultsTo facilitate genetic manipulation, we transformed A. phagocytophilum (Ap) to express a green fluorescent protein (GFP) with the Himar1 transposase system and selection with the clinically irrelevant antibiotic spectinomycin.ConclusionThese transformed bacteria (GFP/Ap) grow at normal rates and are brightly fluorescent in human, monkey, and tick cell culture. Molecular characterization of the GFP/Ap genomic DNA confirmed transposition and the flanking genomic insertion locations were sequenced. Three mice inoculated with GFP/Ap by intraperitoneal injection became infected as demonstrated by the appearance of morulae in a peripheral blood neutrophil and re-isolation of the bacteria in culture.
PLOS ONE | 2009
Roderick F. Felsheim; Timothy J. Kurtti; Ulrike G. Munderloh
Rickettsia peacockii, also known as the East Side Agent, is a non-pathogenic obligate intracellular bacterium found as an endosymbiont in Dermacentor andersoni ticks in the western USA and Canada. Its presence in ticks is correlated with reduced prevalence of Rickettsia rickettsii, the agent of Rocky Mountain Spotted Fever. It has been proposed that a virulent SFG rickettsia underwent changes to become the East Side Agent. We determined the genome sequence of R. peacockii and provide a comparison to a closely related virulent R. rickettsii. The presence of 42 chromosomal copies of the ISRpe1 transposon in the genome of R. peacockii is associated with a lack of synteny with the genome of R. rickettsii and numerous deletions via recombination between transposon copies. The plasmid contains a number of genes from distantly related organisms, such as part of the glycosylation island of Pseudomonas aeruginosa. Genes deleted or mutated in R. peacockii which may relate to loss of virulence include those coding for an ankyrin repeat containing protein, DsbA, RickA, protease II, OmpA, ScaI, and a putative phosphoethanolamine transferase. The gene coding for the ankyrin repeat containing protein is especially implicated as it is mutated in R. rickettsii strain Iowa, which has attenuated virulence. Presence of numerous copies of the ISRpe1 transposon, likely acquired by lateral transfer from a Cardinium species, are associated with extensive genomic reorganization and deletions. The deletion and mutation of genes possibly involved in loss of virulence have been identified by this genomic comparison. It also illustrates that the introduction of a transposon into the genome can have varied effects; either correlating with an increase in pathogenicity as in Francisella tularensis or a loss of pathogenicity as in R. peacockii and the recombination enabled by multiple transposon copies can cause significant deletions in some genomes while not in others.
Journal of Medical Entomology | 2009
Gerald D. Baldridge; Glen A. Scoles; Nicole Y. Burkhardt; Brian Schloeder; Timothy J. Kurtti; Ulrike G. Munderloh
ABSTRACT Dermacentor albipictus (Packard) is a North American tick that feeds on cervids and livestock. It is a suspected vector of anaplasmosis in cattle, but its microbial flora and vector potential remain underevaluated. We screened D. albipictus ticks collected from Minnesota white-tailed deer (Odocoileus virginianus) for bacteria of the genera Anaplasma, Ehrlichia, Francisella, and Rickettsia using polymerase chain reaction (PCR) gene amplification and sequence analyses. We detected Anaplasma phagocytophilum and Francisella-like endosymbionts (FLEs) in nymphal and adult ticks of both sexes at 45 and 94% prevalences, respectively. The A. phagocytophilum and FLEs were transovarially transmitted to F1 larvae by individual ticks at efficiencies of 10–40 and 95–100%, respectively. The FLEs were transovarially transmitted to F2 larvae obtained as progeny of adults from F1 larval ticks reared to maturity on a calf, but A. phagocytophilum were not. Based on PCR and tissue culture inoculation assays, A. phagocytophilum and FLEs were not transmitted to the calf. The amplified FLE 16S rRNA gene sequences were identical to that of an FLE detected in a D. albipictus from Texas, whereas those of the A. phagocytophilum were nearly identical to those of probable human-nonpathogenic A. phagocytophilum WI-1 and WI-2 variants detected in white-tailed deer from central Wisconsin. However, the D. albipictus A. phagocytophilum sequences differed from that of the nonpathogenic A. phagocytophilum variant-1 associated with Ixodes scapularis ticks and white-tailed deer as well as that of the human-pathogenic A. phagocytophilum ha variant associated with I. scapularis and the white-footed mouse, Peromyscus leucopus. The transovarial transmission of A. phagocytophilum variants in Dermacentor ticks suggests that maintenance of A. phagocytophilum in nature may not be solely dependent on horizontal transmission.
Applied and Environmental Microbiology | 2001
Jason A. Simser; Ann T. Palmer; Ulrike G. Munderloh; Timothy J. Kurtti
ABSTRACT An embryonic cell line (DAE100) of the Rocky Mountain wood tick,Dermacentor andersoni, was observed by microscopy to be chronically infected with a rickettsialike organism. The organism was identified as a spotted fever group (SFG) rickettsia by PCR amplification and sequencing of portions of the 16S rRNA, citrate synthase, Rickettsia genus-specific 17-kDa antigen, and SFG-specific 190-kDa outer membrane protein A (rOmpA) genes. Sequence analysis of a partial rompA gene PCR fragment and indirect fluorescent antibody data for rOmpA and rOmpB indicated that this rickettsia was a strain (DaE100R) of Rickettsia peacockii, an SFG species presumed to be avirulent for both ticks and mammals.R. peacockii was successfully maintained in a continuous culture of DAE100 cells without apparent adverse effects on the host cells. Establishing cell lines from embryonic tissues of ticks offers an alternative technique for isolation of rickettsiae that are transovarially transmitted.
Annals of the New York Academy of Sciences | 2005
Michael J. Herron; Marna E. Ericson; Timothy J. Kurtti; Ulrike G. Munderloh
Abstract: Ixodes scapularis ticks transmit Anaplasma phagocytophilum (Ap), agent of human granulocytic anaplasmosis (HGA). Invasion of neutrophil granulocytes (PMN) by Ap is the hallmark of the disease, but these short‐lived phagocytes are not likely the sole cell type required for productive infection. We analyzed infection of microvascular endothelial cells during pathogenesis of anaplasmosis in vivo and in vitro. Organs from Ap‐infected mice were processed for confocal microscopy 41 days p.i. Fluorescent labeling of heart and liver sections using anti‐factor VIII and anti‐MSP2 antibodies allowed colocalization of Ap and vascular endothelium, indicating infection. Ap rapidly invaded and grew within HMEC‐1 human microvascular endothelial cells and readily transferred to PMN. Over 50% of PMN became infected within two hours of coincubation with HMEC‐1. PMN adhered to, polarized, and migrated upon infected endothelial monolayers. The Ap receptor on human PMN is PSGL‐1, and infected endothelial cells upregulate ICAM‐1 (CD54), but the mechanisms of transfer of Ap remain unknown. To elucidate the cellular determinants involved, we tested relevant antibodies and lectins. Anti‐PSGL‐1 reduced infection of PMN, but did not inhibit adherence of PMN to Ap infected HMEC‐1 cells while anti‐CD18 did. Sialidase pretreatment increased, and EDTA and fucoidan decreased binding of Ap to HMEC‐1, whereas several other lectins had no effect. An endothelial reservoir of Ap offers opportunities for ongoing, direct cell‐to‐cell infection of PMN, avoidance of host immune effectors, and completion of the Ap life cycle by infection of circulating leukocytes available for transfer to blood‐feeding ticks.