Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy J. Maguire is active.

Publication


Featured researches published by Timothy J. Maguire.


Annual Review of Chemical and Biomolecular Engineering | 2011

Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges

Francois Berthiaume; Timothy J. Maguire; Martin L. Yarmush

The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured tissues. A significant portion of this effort has been translated to actual therapies, especially in the areas of skin replacement and, to a lesser extent, cartilage repair. A good amount of thoughtful work has also yielded prototypes of other tissue substitutes such as nerve conduits, blood vessels, liver, and even heart. Forward movement to clinical product, however, has been slow. Another offshoot of these efforts has been the incorporation of some new exciting technologies (e.g., microfabrication, 3D printing) that may enable future breakthroughs. In this review we highlight the modest beginnings of the field and then describe three application examples that are in various stages of development, ranging from relatively mature (skin) to ongoing proof-of-concept (cartilage) to early stage (liver). We then discuss some of the major issues that limit the development of complex tissues, some of which are fundamentals-based, whereas others stem from the needs of the end users.


Biochemical Pharmacology | 2010

A microfluidic hepatic coculture platform for cell-based drug metabolism studies.

Eric Novik; Timothy J. Maguire; Piyun Chao; K.-C. Cheng; Martin L. Yarmush

Within the global pharmaceutical and biotech industries, there is significant interest in identifying in vitro screening systems that are more human-relevant-i.e., that offer greater utility in predicting subcellular and cellular physiological responses in humans in vivo-and that thereby allow investigators to reduce the incidence of costly late-stage failures during pharmaceutical clinical trials, as well as to reduce the use of animals in drug testing. Currently incumbent in vitro screening methods, such as culturing human hepatocytes in suspension, while useful, are limited by a lack of long term cellular function. In order to address this limitation, we have established an integrated, microfluidic, in vitro platform that combines the patented HmuREL((R)) microdevice with a hepatic coculture system. In the present report, we use this platform to study clearance and metabolite generation of a battery of molecular entities. The results show that the flow-based coculture system is capable of clearing, with improved resolution and predictive value, compounds with high, medium, and low clearance values. In addition, when coculture is coupled with flow, higher metabolite production rates are obtained than in static systems.


Biochemical Pharmacology | 2009

Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human

Piyun Chao; Timothy J. Maguire; Eric Novik; K.-C. Cheng; Martin L. Yarmush

Integral to the discovery of new pharmaceutical entities is the ability to predict in vivo pharmacokinetic parameters from early stage in vitro data generated prior to the onset of clinical testing. Within the pharmaceutical industry, a whole host of assay methods and mathematical models exist to predict the in vivo pharmacokinetic parameters of drug candidates. One of the most important pharmacokinetic properties of new drug candidates predicted from these methods and models is the hepatic clearance. Current methods, while useful, are still limited in their predictive efficacy. In order to address this issue, we have established a novel microfluidic in vitro culture system, the patented HmuREL device. The device comprises multiple compartments that are designed to be proportional to the physiological architectures and enhanced with the consideration of flow. Here we demonstrate the functionality of the liver-relevant chamber in the HmuREL device, and the feasibility of utilizing our system for predicting hepatic clearance. Cryopreserved human hepatocytes from a single donor were seeded within the HmuREL device to predict the in vivo hepatic clearance (CL(H)) of six marketed model compounds (carbamazepine, caffeine, timolol, sildenafil, imipramine, and buspirone). The intrinsic clearance rates from static culture controls, as well as clearance rates from the HmuREL device were subsequently compared to in vivo data available from the literature.


American Journal of Transplantation | 2012

Liver Defatting: An Alternative Approach to Enable Steatotic Liver Transplantation

Nir I. Nativ; Timothy J. Maguire; Gabriel Adam Yarmush; D. L. Brasaemle; Scot D. Henry; James V. Guarrera; Francois Berthiaume; Martin L. Yarmush

Macrovesicular steatosis in greater than 30% of hepatocytes is a significant risk factor for primary graft nonfunction due to increased sensitivity to ischemia reperfusion (I/R) injury. The growing prevalence of hepatic steatosis due to the obesity epidemic, in conjunction with an aging population, may negatively impact the availability of suitable deceased liver donors. Some have suggested that metabolic interventions could decrease the fat content of liver grafts prior to transplantation. This concept has been successfully tested through nutritional supplementation in a few living donors. Utilization of deceased donor livers, however, requires defatting of explanted organs. Animal studies suggest that this can be accomplished by ex vivo warm perfusion in a time scale of a few hours. We estimate that this approach could significantly boost the size of the donor pool by increasing the utilization of steatotic livers. Here we review current knowledge on the mechanisms whereby excessive lipid storage and macrosteatosis exacerbate hepatic I/R injury, and possible approaches to address this problem, including ex vivo perfusion methods as well as metabolically induced defatting. We also discuss the challenges ahead that need to be addressed for clinical implementation.


Liver Transplantation | 2014

Elevated sensitivity of macrosteatotic hepatocytes to hypoxia/reoxygenation stress is reversed by a novel defatting protocol.

Nir I. Nativ; Gabriel Yarmush; Ashley So; Jeffery Barminko; Timothy J. Maguire; Rene Schloss; Francois Berthiaume; Martin L. Yarmush

Macrosteatotic livers exhibit elevated intrahepatic triglyceride (TG) levels in the form of large lipid droplets (LDs), reduced adenosine triphosphate (ATP) levels, and elevated reactive oxygen species (ROS) levels, and this contributes to their elevated sensitivity to ischemia/reperfusion injury during transplantation. Reducing macrosteatosis in living donors through dieting has been shown to improve transplant outcomes. Accomplishing the same feat for deceased donor grafts would require ex vivo exposure to potent defatting agents. Here we used a rat hepatocyte culture system exhibiting a macrosteatotic LD morphology, elevated TG levels, and an elevated sensitivity to hypoxia/reoxygenation (H/R) to test for such agents and ameliorate H/R sensitivity. Macrosteatotic hepatocyte preconditioning for 48 hours with a defatting cocktail that was previously developed to promote TG catabolism reduced the number of macrosteatotic LDs and intracellular TG levels by 82% and 27%, respectively, but it did not ameliorate sensitivity to H/R. Supplementation of this cocktail with l‐carnitine, together with hyperoxic exposure, yielded a similar reduction in the number of macrosteatotic LDs and a 57% reduction in intrahepatic TG storage, likely by increasing the supply of acetyl coenzyme A to mitochondria, as indicated by a 70% increase in ketone body secretion. Furthermore, this treatment reduced ROS levels by 32%, increased ATP levels by 27% (to levels near those of lean controls), and completely abolished H/R sensitivity as indicated by approximately 85% viability after H/R and the reduction of cytosolic lactate dehydrogenase release to levels seen in lean controls. Cultures maintained for 48 hours after H/R were approximately 83% viable and exhibited superior urea secretion and bile canalicular transport in comparison with untreated macrosteatotic cultures. In conclusion, these findings show that the elevated sensitivity of macrosteatotic hepatocytes to H/R can be overcome by defatting agents, and they suggest a possible route for the recovery of discarded macrosteatotic grafts. Liver Transpl 20:1000–1011, 2014.


Current Drug Metabolism | 2009

Design and Application of Microfluidic Systems for In Vitro Pharmacokinetic Evaluation of Drug Candidates

Timothy J. Maguire; Eric Novik; Piyun Chao; Jeffrey Barminko; Yaakov Nahmias; Martin L. Yarmush; K.-C. Cheng

One of the fundamental challenges facing the development of new chemical entities within the pharmaceutical industry is the extrapolation of key in vivo parameters from in vitro cell culture assays and animal studies. Development of microscale devices and screening assays incorporating primary human cells can potentially provide better, faster and more efficient prediction of in vivo toxicity and clinical drug performance. With this goal in mind, large strides have been made in the area of microfluidics to provide in vitro surrogates that are designed to mimic the physiological architecture and dynamics. More recent advancements have been made in the development of in vitro analogues to physiologically-based pharmacokinetic (PBPK) models - a mathematical model that represents the body as interconnected compartments specific for a particular organ. In this review we highlight recent advancements in human hepatocyte microscale culture, and describe the next generation of integrated devices, whose potential allows for the high throughput assessment of drug metabolism, distribution and pharmacokinetics.


BMC Bioinformatics | 2007

Bioinformatics analysis of the early inflammatory response in a rat thermal injury model

Eric Yang; Timothy J. Maguire; Martin L. Yarmush; Francois Berthiaume; Ioannis P. Androulakis

BackgroundThermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities.ResultsImplementation of our algorithm on data obtained from an animal (rat) burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organisms response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation.ConclusionOur results indicate that our novel selection/classification algorithm has been successful in selecting out genes with play an important role in thermal injury. Additionally, we have demonstrated the value of an integrative approach in identifying possible points of intervention, namely the activation of certain transcription factors that govern the organisms response.


Metabolites | 2016

Metabolic Flux Distribution during Defatting of Steatotic Human Hepatoma (HepG2) Cells

Gabriel Yarmush; Lucas Santos; Joshua Yarmush; Srivathsan Koundinyan; Mubasher Saleem; Nir I. Nativ; Rene Schloss; Martin L. Yarmush; Timothy J. Maguire; Francois Berthiaume

Methods that rapidly decrease fat in steatotic hepatocytes may be helpful to recover severely fatty livers for transplantation. Defatting kinetics are highly dependent upon the extracellular medium composition; however, the pathways involved are poorly understood. Steatosis was induced in human hepatoma cells (HepG2) by exposure to high levels of free fatty acids, followed by defatting using plain medium containing no fatty acids, or medium supplemented with a cocktail of defatting agents previously described before. We measured the levels of 28 extracellular metabolites and intracellular triglyceride, and fed the data into a steady-state mass balance model to estimate strictly intracellular fluxes. We found that during defatting, triglyceride content decreased, while beta-oxidation, the tricarboxylic acid cycle, and the urea cycle increased. These fluxes were augmented by defatting agents, and even more so by hyperoxic conditions. In all defatting conditions, the rate of extracellular glucose uptake/release was very small compared to the internal supply from glycogenolysis, and glycolysis remained highly active. Thus, in steatotic HepG2 cells, glycolysis and fatty acid oxidation may co-exist. Together, these pathways generate reducing equivalents that are supplied to mitochondrial oxidative phosphorylation.


Drug Metabolism Letters | 2009

Prediction of Human Hepatic Clearance Using an In Vitro Plated Hepatocyte Clearance Model

Piyun Chao; Jeffrey Barminko; Eric Novik; Yi Han; Timothy J. Maguire; K.-C. Cheng

Previously we have used human hepatocytes in suspension by measuring the parent loss for prediction of metabolic clearance according to a 1(st)-order kinetic model. In this study, we evaluated a novel integrative approach using plated human hepatocytes to include both uptake processes and metabolism in a single assay. Test articles were added in the medium, and the intrinsic clearance was determined based on the disappearance of the parent compound from the medium. Three different methods: direct, well-stirred, and parallel tube were tested for scaling purpose. With 30 randomly selected compounds with clinical clearance data, the scaled clearance showed reasonable linear correlation with r(2) values of 0.67, 0.72, and 0.70 for direct, well-stirred and parallel tube models, respectively. When human serum albumin (HSA) was added to the incubation medium a shift to lower in vitro clearance was observed for most of the compounds, suggesting that protein binding may have an effect on the metabolic clearance. In the presence of 4% of HSA, which is equivalent to the albumin concentration in the human plasma, the in vitro clearance data have the best prediction of human clearance when using the well-stirred method, followed by the parallel tube method and direct method. This study demonstrates the utility of using plated human hepatocyte as an integrated system for the prediction of human metabolic clearance. In addition, evaluation of the protein binding shift in the clearance showed that a significant number of compounds may not follow the equilibrium assumption according to the well-stirred model.


Frontiers in Immunology | 2013

Characterization and ex vivo Expansion of Human Placenta-Derived Natural Killer Cells for Cancer Immunotherapy

Lin Kang; Vanessa Voskinarian-Berse; Eric Law; Tiffany Reddin; Mohit B. Bhatia; Alexandra Hariri; Yuhong Ning; David Xu Dong; Timothy J. Maguire; Martin L. Yarmush; Wolfgang Hofgartner; Stewart Abbot; Xiaokui Zhang; Robert J. Hariri

Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched, full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell, HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units, CD56+CD3− placenta-derived NK cells, termed pNK cells, were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were >80% CD56+CD3−, comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D, NKp46, and NKp44 (p < 0.001, p < 0.001, and p < 0.05, respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile, immunophenotype, and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development, pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.

Collaboration


Dive into the Timothy J. Maguire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge