Timothy J. Satchwell
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Satchwell.
Haematologica | 2010
Emile van den Akker; Timothy J. Satchwell; Stephanie Pellegrin; Geoff Daniels; Ashley M. Toye
The study of human erythropoiesis in health and disease requires a robust culture system that consistently and reliably generates large numbers of immature erythroblasts that can be induced to differentiate synchronously. We describe a culture method modified from Leberbauer et al. (2005) and obtain a homogenous population of erythroblasts from peripheral blood mononuclear cells (PBMC) without prior purification of CD34+ cells. This pure population of immature erythroblasts can be expanded to obtain 4×108 erythroblasts from 1×108 PBMC after 13–14 days in culture. Upon synchronized differentiation, high levels of enucleation (80–90%) and low levels of cell death (<10%) are achieved. We compared the yield of erythroblasts obtained from PBMC, CD34+ cells or PBMC depleted of CD34+ cells and show that CD34− cells represent the most significant early erythroid progenitor population. This culture system may be particularly useful for investigating the pathophysiology of anemic patients where only small blood volumes are available.
Blood Cells Molecules and Diseases | 2010
Emile van den Akker; Timothy J. Satchwell; Rosalind C. Williamson; Ashley M. Toye
The bicarbonate/chloride exchanger band 3 (Anion Exchanger 1, AE1) is the most abundant protein in the erythrocyte membrane, it has an important role in gas exchange and functions as a point of attachment for the cytoskeletons maintaining the mechanistic and osmotic properties of the erythrocyte. Band 3 is found in three distinct protein complexes within the erythrocyte membrane: an ankyrin-dependent tetrameric band 3 complex, a dimeric band 3 complex bound to the protein 4.1-GPC junctional complex and as freely diffusing dimeric band 3 complexes. Much if not all of our present knowledge of these protein complexes is derived from mouse knockout model systems and human variant blood samples. This review will explore what is known about the band 3 complexes of mice and humans, focussing on the observed species differences and their potential functional consequences.
Blood | 2011
Timothy J. Satchwell; Amanda J. Bell; Stephanie Pellegrin; Sabine Kupzig; Kay Ridgwell; Geoff Daniels; David J. Anstee; Emile van den Akker; Ashley M. Toye
Band 3, the major anion transport protein of human erythrocytes, forms the core of a multiprotein complex in the erythrocyte membrane. Here we studied the spatiotemporal mechanisms of band 3 multiprotein complex assembly during erythropoiesis. Significant pools of intracellular band 3 and Rh-associated glycoprotein (RhAG) were found in the basophilic erythroblast. These intracellular pools decreased in the polychromatic erythroblast, whereas surface expression increased and were lowest in the orthochromatic erythroblast and reticulocytes. Protease treatment of intact cells to remove extracellular epitopes recognized by antibodies to band 3 and RhAG was used to study surface delivery kinetics and intracellular complex composition from the proerythroblast stage to the enucleated reticulocyte. Newly synthesized band 3 and protein 4.2 interact initially in the early stages of the secretory pathway and are found associated at the plasma membrane from the basophilic stage of erythropoiesis. Although we could successfully coimmunoprecipitate Rh with RhAG from plasma membrane pools at a similar stage, no intracellular interaction between these proteins was detectable. Knockdown of RhAG during early erythropoiesis was accompanied by a concomitant drop in membrane expression of Rh polypeptides. These data are consistent with assembly of major components of the band 3 macrocomplex at an early stage during erythropoiesis.
Nature Communications | 2017
Kongtana Trakarnsanga; Rebecca E. Griffiths; Marieangela C. Wilson; Allison Blair; Timothy J. Satchwell; Marjolein Meinders; Nicola Cogan; Sabine Kupzig; Ryo Kurita; Yukio Nakamura; Ashley M. Toye; David J. Anstee; Jan Frayne
With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.
Biophysical Journal | 2014
Sabyasachi Dasgupta; Thorsten Auth; Nir S. Gov; Timothy J. Satchwell; Eric Hanssen; Elizabeth S. Zuccala; David T. Riglar; Ashley M. Toye; Timo Betz; Jake Baum; Gerhard Gompper
The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells.
Haematologica | 2010
Emile van den Akker; Timothy J. Satchwell; Stephanie Pellegrin; Joanna F. Flatt; Michel Maigre; Geoff Daniels; Jean Delaunay; Lesley J. Bruce; Ashley M. Toye
Background Protein 4.2 deficiency caused by mutations in the EPB42 gene results in hereditary spherocytosis with characteristic alterations of CD47, CD44 and RhAG. We decided to investigate at which stage of erythropoiesis these hallmarks of protein 4.2 deficiency arise in a novel protein 4.2 patient and whether they cause disruption to the band 3 macrocomplex. Design and Methods We used immunoprecipitations and detergent extractability to assess the strength of protein associations within the band 3 macrocomplex and with the cytoskeleton in erythrocytes. Patient erythroblasts were cultured from peripheral blood mononuclear cells to study the effects of protein 4.2 deficiency during erythropoiesis. Results We report a patient with two novel mutations in EPB42 resulting in complete protein 4.2 deficiency. Immunoprecipitations revealed a weakened ankyrin-1-band 3 interaction in erythrocytes resulting in increased band 3 detergent extractability. CD44 abundance and its association with the cytoskeleton were increased. Erythroblast differentiation revealed that protein 4.2 and band 3 appear simultaneously and associate early in differentiation. Protein 4.2 deficiency results in lower CD47, higher CD44 expression and increased RhAG glycosylation starting from the basophilic stage. The normal downregulation of CD44 expression was not seen during protein 4.2(−) erythroblast differentiation. Knockdown of CD47 did not increase CD44 expression, arguing against a direct reciprocal relationship. Conclusions We have established that the characteristic changes caused by protein 4.2 deficiency occur early during erythropoiesis. We postulate that weakening of the ankyrin-1-band 3 association during protein 4.2 deficiency is compensated, in part, by increased CD44-cytoskeleton binding.
PLOS ONE | 2013
Amanda J. Bell; Timothy J. Satchwell; Kate J. Heesom; Bethan R. Hawley; Sabine Kupzig; Matthew Hazell; Rosey Mushens; Andrew Herman; Ashley M. Toye
Enucleation is the step in erythroid terminal differentiation when the nucleus is expelled from developing erythroblasts creating reticulocytes and free nuclei surrounded by plasma membrane. We have studied protein sorting during human erythroblast enucleation using fluorescence activated cell sorting (FACS) to obtain pure populations of reticulocytes and nuclei produced by in vitro culture. Nano LC mass spectrometry was first used to determine the protein distribution profile obtained from the purified reticulocyte and extruded nuclei populations. In general cytoskeletal proteins and erythroid membrane proteins were preferentially restricted to the reticulocyte alongside key endocytic machinery and cytosolic proteins. The bulk of nuclear and ER proteins were lost with the nucleus. In contrast to the localization reported in mice, several key erythroid membrane proteins were detected in the membrane surrounding extruded nuclei, including band 3 and GPC. This distribution of key erythroid membrane and cytoskeletal proteins was confirmed using western blotting. Protein partitioning during enucleation was investigated by confocal microscopy with partitioning of cytoskeletal and membrane proteins to the reticulocyte observed to occur at a late stage of this process when the nucleus is under greatest constriction and almost completely extruded. Importantly, band 3 and CD44 were shown not to restrict specifically to the reticulocyte plasma membrane. This highlights enucleation as a stage at which excess erythroid membrane proteins are discarded in human erythroblast differentiation. Given the striking restriction of cytoskeleton proteins and the fact that membrane proteins located in macromolecular membrane complexes (e.g. GPA, Rh and RhAG) are segregated to the reticulocyte, we propose that the membrane proteins lost with the nucleus represent an excess mobile population of either individual proteins or protein complexes.
Haematologica | 2013
Timothy J. Satchwell; Stephanie Pellegrin; Paola Bianchi; Bethan R. Hawley; Alexandra Gampel; Kathryn E. Mordue; Annika Budnik; Elisa Fermo; Wilma Barcellini; David Stephens; Emile van den Akker; Ashley M. Toye
Congenital dyserythropoietic anemia type II is an autosomally recessive form of hereditary anemia caused by SEC23B gene mutations. Patients exhibit characteristic phenotypes including multinucleate erythroblasts, erythrocytes with hypoglycosylated membrane proteins and an apparent double plasma membrane. Despite ubiquitous expression of SEC23B, the effects of mutations in this gene are confined to the erythroid lineage and the basis of this erythroid specificity remains to be defined. In addition, little is known regarding the stage at which the disparate phenotypes of this disease manifest during erythropoiesis. We employ an in vitro culture system to monitor the appearance of the defining phenotypes associated with congenital dyserythropoietic anemia type II during terminal differentiation of erythroblasts derived from small volumes of patient peripheral blood. Membrane protein hypoglycosylation was detected by the basophilic stage, preceding the onset of multinuclearity in orthochromatic erythroblasts that occurs coincident with the loss of secretory pathway proteins including SEC23A during erythropoiesis. Endoplasmic reticulum remnants were observed in nascent reticulocytes of both diseased and healthy donor cultures but were lost upon further maturation of normal reticulocytes, implicating a defect of ER clearance during reticulocyte maturation in congenital dyserythropoietic anemia type II. We also demonstrate distinct isoform and species-specific expression profiles of SEC23 during terminal erythroid differentiation and identify a prolonged expression of SEC23A in murine erythropoiesis compared to humans. We propose that SEC23A is able to compensate for the absence of SEC23B in mouse erythroblasts, providing a basis for the absence of phenotype within the erythroid lineage of a recently described SEC23B knockout mouse.
Journal of The American Society of Nephrology | 2010
Fiona Wu; Moin A. Saleem; Nicola B. Kampik; Timothy J. Satchwell; Rosalind C. Williamson; Simone M. Blattner; Lan Ni; Tibor Tóth; Graham White; Mark Young; Mark D. Parker; Seth L. Alper; Carsten A. Wagner; Ashley M. Toye
The central role of the multifunctional protein nephrin within the macromolecular complex forming the glomerular slit diaphragm is well established, but the mechanisms linking the slit diaphragm to the cytoskeleton and to the signaling pathways involved in maintaining the integrity of the glomerular filter remain incompletely understood. Here, we report that nephrin interacts with the bicarbonate/chloride transporter kidney anion exchanger 1 (kAE1), detected by yeast two-hybrid assay and confirmed by immunoprecipitation and co-localization studies. We confirmed low-level glomerular expression of kAE1 in human and mouse kidneys by immunoblotting and immunofluorescence microscopy. We observed less kAE1 in human glomeruli homozygous for the NPHS1(FinMaj) nephrin mutation, whereas kAE1 expression remained unchanged in the collecting duct. We could not detect endogenous kAE1 expression in NPHS1(FinMaj) podocytes in primary culture, but heterologous re-introduction of wild-type nephrin into these podocytes rescued kAE1 expression. In kidneys of Ae1(-/-) mice, nephrin abundance was normal but its distribution was altered along with the reported kAE1-binding protein integrin-linked kinase (ILK). Ae1(-/-) mice had increased albuminuria with glomerular enlargement, mesangial expansion, mesangiosclerosis, and expansion of the glomerular basement membrane. Glomeruli with ILK-deficient podocytes also demonstrated altered AE1 and nephrin expression, further supporting the functional interdependence of these proteins. These data suggest that the podocyte protein kAE1 interacts with nephrin and ILK to maintain the structure and function of the glomerular basement membrane.
Scientific Reports | 2016
Elizabeth S. Zuccala; Timothy J. Satchwell; Fiona Angrisano; Yan Hong Tan; Marieangela C. Wilson; Kate J. Heesom; Jake Baum
The invasive blood-stage malaria parasite – the merozoite – induces rapid morphological changes to the target erythrocyte during entry. However, evidence for active molecular changes in the host cell that accompany merozoite invasion is lacking. Here, we use invasion inhibition assays, erythrocyte resealing and high-definition imaging to explore red cell responses during invasion. We show that although merozoite entry does not involve erythrocyte actin reorganisation, it does require ATP to complete the process. Towards dissecting the ATP requirement, we present an in depth quantitative phospho-proteomic analysis of the erythrocyte during each stage of invasion. Specifically, we demonstrate extensive increased phosphorylation of erythrocyte proteins on merozoite attachment, including modification of the cytoskeletal proteins beta-spectrin and PIEZO1. The association with merozoite contact but not active entry demonstrates that parasite-dependent phosphorylation is mediated by host-cell kinase activity. This provides the first evidence that the erythrocyte is stimulated to respond to early invasion events through molecular changes in its membrane architecture.