Timothy J. Strelevitz
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy J. Strelevitz.
Drug Metabolism Reviews | 2001
Michael B. Fisher; Mary F. Paine; Timothy J. Strelevitz; Steven A. Wrighton
At present, the methods and enzymology of the UDP-glucuronosyltransferases (UGTs) lag behind that of the cytochromes P450 (CYPs). About 15 human UGTs have been identified, and knowledge about their regulation, substrate selectivity, and tissue distribution has progressed recently. Alamethicin has been characterized as a treatment to remove the latency of microsomal glucuronidations. Most UGT isoforms appear to have a distinct hepatic and/or extrahepatic expression, resulting in significant expression in kidney, intestine, and steroid target tissues. The gastrointestinal tract possesses a complex expression pattern largely containing members of the UGT1A subfamily. Thus, these forms are poised to participate in the first pass metabolism of oral drugs. The authors and others have identified a significant expression of UGT1A1 in human small intestine, an enzyme possessing considerable allelic variability and a polymorphic expression pattern in intestine. Intestinal glucuronidation therefore plays a major role not only in first pass metabolism, but also in the degree of interindividual variation in overall oral bioavailability. Due to issues such as significant genetic variability and tissue localization in first-pass organs, clearance due to UGT1A1 should be minimized for new drugs.
Journal of Medicinal Chemistry | 2010
Mark Edward Flanagan; Todd Andrew Blumenkopf; Matthew Frank Brown; Jeffrey M. Casavant; Chang Shang-Poa; Jonathan L. Doty; Eileen A. Elliott; Michael B. Fisher; Michael Hines; Craig R. Kent; Elizabeth M. Kudlacz; Brett M. Lillie; Kelly S. Magnuson; Sandra P. McCurdy; Michael John Munchhof; Bret D. Perry; Perry S. Sawyer; Timothy J. Strelevitz; Chakrapani Subramanyam; Jianmin Sun; David A. Whipple; Paul S. Changelian
There is a critical need for safer and more convenient treatments for organ transplant rejection and autoimmune disorders such as rheumatoid arthritis. Janus tyrosine kinases (JAK1, JAK3) are expressed in lymphoid cells and are involved in the signaling of multiple cytokines important for various T cell functions. Blockade of the JAK1/JAK3-STAT pathway with a small molecule was anticipated to provide therapeutic immunosuppression/immunomodulation. The Pfizer compound library was screened against the catalytic domain of JAK3 resulting in the identification of a pyrrolopyrimidine-based series of inhibitors represented by CP-352,664 (2a). Synthetic analogues of 2a were screened against the JAK enzymes and evaluated in an IL-2 induced T cell blast proliferation assay. Select compounds were evaluated in rodent efficacy models of allograft rejection and destructive inflammatory arthritis. Optimization within this chemical series led to identification of CP-690,550 1, a potential first-in-class JAK inhibitor for treatment of autoimmune diseases and organ transplant rejection.
Drug Metabolism and Disposition | 2005
Juntyma J. Engtrakul; Robert S. Foti; Timothy J. Strelevitz; Michael B. Fisher
Human liver microsomes are a reagent commonly used to predict human hepatic clearance of new chemical entities via phase 1 metabolism. Another common metabolic pathway, glucuronidation, can also be observed in human liver microsomes, although the scalability of this process has not been validated. In fact, several groups have demonstrated that clearance estimated from liver microsomes with UDP-glucuronic acid typically underpredicts the actual in vivo clearance more than 10-fold for compounds that are predominantly glucuronidated. In contrast, clearance predicted using human hepatocytes, for these same compounds, provides a more accurate assessment of in vivo clearance. We sought to characterize the kinetics of glucuronidation of the selective UGT2B7 substrate AZT (3′-azido-3′-deoxythymidine), a selective UGT2B7 substrate, in human liver microsomes (HLMs), recombinant UGT2B7, and human hepatocytes. Apparent Km values in these three preparations were 760, 490, and 87 μM, with apparent Vmax values highest in hepatocytes. The IC50 for ibuprofen against AZT glucuronidation, when run at its Km concentration in HLMs and hepatocytes, was 975 and 170 μM, respectively. Since incubation conditions have been shown to modulate glucuronidation rates, AZT glucuronidation was performed in various physiological and nonphysiological buffer systems, namely Tris, phosphate, sulfate, carbonate, acetate, human plasma, deproteinized human liver cytosol, and Williams E medium. The data showed that carbonate and Williams E medium, more physiologically relevant buffers, yielded the highest rates of AZT glucuronidation. Km observed in HLM/carbonate was 240 μM, closer to that found in hepatocytes, suggesting that matrix differences might cause the kinetic differences observed between liver preparations. Caution should be exercised when extrapolating metabolic lability via glucuronidation or inhibition of UGT enzymes from human liver microsomes, since this system appears to underpredict the degree of lability or inhibition, respectively, due in part to an apparent decrease in substrate affinity.
European Journal of Medicinal Chemistry | 2012
Li Di; Christopher E. Keefer; Dennis O. Scott; Timothy J. Strelevitz; George Chang; Yi-an Bi; Yurong Lai; Jonathon Duckworth; Katherine S. Fenner; Matthew D. Troutman; R. Scott Obach
Metabolic stability of drug candidates are often determined in both liver microsome and hepatocyte assays. Comparison of intrinsic clearance values between the two assays provides additional information to guide drug design. Intrinsic clearance values from human liver microsomes and hepatocytes were compared for a set of commercial drugs with known metabolic pathways and transporter characteristics. The results showed that for compounds that were predominately metabolized by CYP mediated mechanisms, the intrinsic clearance values from the two assays were comparable. For compounds with non-CYP pathways, such as UGT and AO, intrinsic clearance was faster in hepatocytes than in microsomes. Substrates of uptake or efflux transporters in this study did not have significant differences of intrinsic clearance between microsomes and hepatocytes, when uptake into the hepatocytes was not the rate-limiting step. When hepatic uptake was rate limiting, intrinsic clearance in microsomes was faster than that in hepatocytes, which was more prevalent for compounds with rapid metabolism. Low passive permeability can limit the exposure to drug molecules to the metabolizing enzymes in the hepatocytes in relationship to the rate of metabolism. The faster the rate of metabolism, the higher permeability is needed for molecule to enter the cells and not becoming rate-limiting. The findings are very useful for drug discovery programs to gain additional insights on mechanistic information to help drug design without added experiments. Follow-up studies can then be designed to address specific questions.
Drug Metabolism and Disposition | 2012
Raman Sharma; Timothy J. Strelevitz; Hongying Gao; Alan J Clark; Klaas Schildknegt; Obach Rs; Sharon L. Ripp; Douglas K. Spracklin; Larry M. Tremaine; Alfin D. N. Vaz
The pharmacokinetic properties of drugs may be altered by kinetic deuterium isotope effects. With specifically deuterated model substrates and drugs metabolized by aldehyde oxidase, we demonstrate how knowledge of the enzymes reaction mechanism, species differences in the role played by other enzymes in a drugs metabolic clearance, and differences in systemic clearance mechanisms are critically important for the pharmacokinetic application of deuterium isotope effects. Ex vivo methods to project the in vivo outcome using deuterated carbazeran and zoniporide with hepatic systems demonstrate the importance of establishing the extent to which other metabolic enzymes contribute to the metabolic clearance mechanism. Differences in pharmacokinetic outcomes in guinea pig and rat, with the same metabolic clearance mechanism, show how species differences in the systemic clearance mechanism can affect the in vivo outcome. Overall, to gain from the application of deuteration as a strategy to alter drug pharmacokinetics, these studies demonstrate the importance of understanding the systemic clearance mechanism and knowing the identity of the metabolic enzymes involved, the extent to which they contribute to metabolic clearance, and the extent to which metabolism contributes to the systemic clearance.
Journal of Medicinal Chemistry | 2009
Thomas V. Magee; Sharon L. Ripp; Bryan Li; Richard A. Buzon; Lou Chupak; Thomas J. Dougherty; Steven M. Finegan; Dennis Girard; Anne E. Hagen; Michael J. Falcone; Kathleen A. Farley; Karl Granskog; Joel R. Hardink; Michael D. Huband; Barbara J. Kamicker; Takushi Kaneko; Michael J. Knickerbocker; Jennifer Liras; Andrea Marra; Ivy Medina; Thuy-Trinh Nguyen; Mark C. Noe; R. Scott Obach; John P. O’Donnell; Joseph Penzien; Usa Reilly; John Schafer; Yue Shen; Gregory G. Stone; Timothy J. Strelevitz
Respiratory tract bacterial strains are becoming increasingly resistant to currently marketed macrolide antibiotics. The current alternative telithromycin (1) from the newer ketolide class of macrolides addresses resistance but is hampered by serious safety concerns, hepatotoxicity in particular. We have discovered a novel series of azetidinyl ketolides that focus on mitigation of hepatotoxicity by minimizing hepatic turnover and time-dependent inactivation of CYP3A isoforms in the liver without compromising the potency and efficacy of 1.
Drug Metabolism and Disposition | 2012
Timothy J. Strelevitz; Orozco Cc; Obach Rs
Aldehyde oxidase (AO) metabolism could lead to significant underestimation of clearance in prediction of human pharmacokinetics as well as unanticipated exposure to AO-generated metabolites, if not accounted for early in drug research. We report a method using cryopreserved human hepatocytes and the time-dependent AO inhibitor hydralazine (KI = 83 ± 27 μM, kinact = 0.063 ± 0.007 min−1), which estimates the contribution of AO metabolism relative to total hepatic clearance. Using zaleplon as a probe substrate and simultaneously monitoring the AO-catalyzed formation of oxozaleplon and the CYP3A-catalyzed formation of desethyzaleplon in the presence of a range of hydralazine concentrations, it was determined that >90% inhibition of the AO activity with minimal effect on the CYP3A activity could be achieved with 25 to 50 μM hydralazine. This method was used to estimate the fraction metabolized due to AO [fm(AO)] for six compounds with clearance attributed to AO along with four other drugs not metabolized by AO. The fm(AO) values for the AO substrates ranged between 0.49 and 0.83. Differences in estimated fm(AO) between two batches of pooled human hepatocytes suggest that sensitivity to hydralazine varies slightly with hepatocyte preparations. Substrates with a CYP2D6 contribution to clearance were affected by hydralazine to a minor extent, because of weak inhibition of this enzyme. Overall, these findings demonstrate that hydralazine, at a concentration of 25 to 50 μM, can be used in human hepatocyte incubations to estimate the contribution of AO to the hepatic clearance of drugs and other compounds.
Journal of Chromatography B: Biomedical Sciences and Applications | 1996
Timothy J. Strelevitz; Michael C. Linhares
A rugged, simple, and selective method for the determination of danofloxacin and its primary metabolite, N-desmethyldanofloxacin, in cattle (liver, muscle, kidney, and fat) and chicken (liver and muscle) tissues was developed. The method is selective for danofloxacin and N-desmethyldanofloxacin over other veterinary important fluoroquinolones, such as enrofloxacin, ciprofloxacin, norfloxacin, and ofloxacin. Selectivity is achieved through a combination of extraction, chromatography, and fluorescence detection. The analytes were extracted from homogenized tissues using a methanol-perchloric-phosphoric acid solution. After centrifugation, direct injection of extraction supernate was possible. The limit of quantitation was 20 pg on column. Separation was achieved on an Inertsil C8 (5 microns, 100 A) column with dimensions of 250 x 4.6 mm I.D. The mobile phase consisted of 0.05 M phosphate buffer (pH 3.5)-acetonitrile (88:12). A fluorescence detector was utilized with an excitation wavelength of 280 nm and an emission wavelength of 440 nm. The assay was accurate and reproducible within the range of 10 to 500 ng/g for both danofloxacin and N-desmethyldanofloxacin. Intra-assay accuracy was between 98 and 101%, and precision was less than 4%. Inter-assay accuracy was between 99 and 102%, while precision was less than 2%. Recoveries for both analytes over the dynamic range were greater than 90% for all the tissues.
Drug Metabolism and Disposition | 2016
Louis Leung; Xin Yang; Timothy J. Strelevitz; Justin Ian Montgomery; Matthew Frank Brown; Michael A. Zientek; Christopher Banfield; Adam M. Gilbert; Atli Thorarensen; Martin E. Dowty
The concept of target-specific covalent enzyme inhibitors appears attractive from both an efficacy and a selectivity viewpoint considering the potential for enhanced biochemical efficiency associated with an irreversible mechanism. Aside from potential safety concerns, clearance prediction of covalent inhibitors represents a unique challenge due to the inclusion of nontraditional metabolic pathways of direct conjugation with glutathione (GSH) or via GSH S-transferase–mediated processes. In this article, a novel pharmacokinetic algorithm was developed using a series of Pfizer kinase selective acrylamide covalent inhibitors based on their in vitro-in vivo extrapolation of systemic clearance in rats. The algorithm encompasses the use of hepatocytes as an in vitro model for hepatic clearance due to oxidative metabolism and GSH conjugation, and the use of whole blood as an in vitro surrogate for GSH conjugation in extrahepatic tissues. Initial evaluations with clinical covalent inhibitors suggested that the scaling algorithm developed from rats may also be useful for human clearance prediction when species-specific parameters, such as hepatocyte and blood stability and blood binding, were considered. With careful consideration of clearance mechanisms, the described in vitro-in vivo extrapolation approach may be useful to facilitate candidate optimization, selection, and prediction of human pharmacokinetic clearance during the discovery and development of targeted covalent inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2014
Srinivas Reddy Chirapu; Jonathan N. Bauman; Heather Eng; Theunis C. Goosen; Timothy J. Strelevitz; Subhash C. Sinha; Robert L. Dow; M. G. Finn
A design for the selective release of drug molecules in the liver was tested, involving the attachment of a representative active agent by an ester linkage to various 2-substituted 5-aminovaleric acid carbamates. The anticipated pathway of carboxylesterase-1-mediated carbamate cleavage followed by lactamization and drug release was frustrated by unexpectedly high sensitivity of the ester linkage toward hydrolysis by carboxylesterase-2 and other microsomal components.