Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy J. Vyse is active.

Publication


Featured researches published by Timothy J. Vyse.


Nature Genetics | 2008

Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM , PXK , KIAA1542 and other loci

John B. Harley; Marta E. Alarcón-Riquelme; Lindsey A. Criswell; Chaim O. Jacob; Robert P. Kimberly; Kathy L. Moser; Betty P. Tsao; Timothy J. Vyse; Carl D. Langefeld; Swapan K. Nath; Joel M. Guthridge; Beth L. Cobb; Daniel B. Mirel; Miranda C. Marion; Adrienne H. Williams; Jasmin Divers; Wei Wang; Summer G Frank; Bahram Namjou; Stacey Gabriel; Annette Lee; Peter K. Gregersen; Timothy W. Behrens; Kimberly E. Taylor; Michelle M. A. Fernando; Raphael Zidovetzki; Patrick M. Gaffney; Jeffrey C. Edberg; John D. Rioux; Joshua O. Ojwang

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ∼30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio = 0.82–1.62) in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ⩾9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.


Cell | 1996

GENETIC ANALYSIS OF AUTOIMMUNE DISEASE

Timothy J. Vyse; John A. Todd

We thank Martin Farrall, Chris Lord, Paul Lyons, Jared Lunceford, and Neil Risch for discussion. We also thank Paul Lyons for preparation of Figure 1Figure 1. We apologize to authors of important references that we could not cite. Research in the laboratories of T. J. V. and J. A. T. was supported by the National Institutes of Health and by the Juvenile Diabetes Foundation, the British Diabetic Association, the United Kingdom Medical Research Council, and the Wellcome Trust. J. A. T. is a Wellcome Trust Principal Research Fellow.


Nature | 2006

Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans

Timothy J. Aitman; Rong Dong; Timothy J. Vyse; Penny J. Norsworthy; Michelle D. Johnson; Jennifer A. Smith; Jonathan Mangion; Cheri Roberton-Lowe; Amy J. Marshall; Enrico Petretto; Matthew D. Hodges; Gurjeet Bhangal; Sheetal G. Patel; Kelly Sheehan-Rooney; Mark Duda; Paul R. Cook; David J. Evans; Jan Domin; Jonathan Flint; Joseph J. Boyle; Charles D. Pusey; H. Terence Cook

Identification of the genes underlying complex phenotypes and the definition of the evolutionary forces that have shaped eukaryotic genomes are among the current challenges in molecular genetics. Variation in gene copy number is increasingly recognized as a source of inter-individual differences in genome sequence and has been proposed as a driving force for genome evolution and phenotypic variation. Here we show that copy number variation of the orthologous rat and human Fcgr3 genes is a determinant of susceptibility to immunologically mediated glomerulonephritis. Positional cloning identified loss of the newly described, rat-specific Fcgr3 paralogue, Fcgr3-related sequence (Fcgr3-rs), as a determinant of macrophage overactivity and glomerulonephritis in Wistar Kyoto rats. In humans, low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus. The finding that gene copy number polymorphism predisposes to immunologically mediated renal disease in two mammalian species provides direct evidence for the importance of genome plasticity in the evolution of genetically complex phenotypes, including susceptibility to common human disease.


Nature Genetics | 2008

Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus.

Robert R. Graham; Chris Cotsapas; Leela Davies; Rachel Hackett; Christopher J. Lessard; Joanlise M. Leon; Noël P. Burtt; Candace Guiducci; Melissa Parkin; Casey Gates; Robert M. Plenge; Timothy W. Behrens; Joan E. Wither; John D. Rioux; Paul R. Fortin; Deborah S. Cunninghame Graham; Andrew Wong; Timothy J. Vyse; Mark J. Daly; David Altshuler; Kathy L. Moser; Patrick M. Gaffney

Systemic lupus erythematosus (SLE) is an autoimmune disease influenced by genetic and environmental factors. We carried out a genome-wide association scan and replication study and found an association between SLE and a variant in TNFAIP3 (rs5029939, meta-analysis P = 2.89 × 10−12, OR = 2.29). We also found evidence of two independent signals near TNFAIP3 associated with SLE, including one previously associated with rheumatoid arthritis (RA). These results establish that variants near TNFAIP3 contribute to differential risk of SLE and RA.


Nature Genetics | 2007

Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus

Min Ae Lee-Kirsch; Maolian Gong; Dipanjan Chowdhury; Lydia Senenko; Kerstin Engel; Young-Ae Lee; Udesh de Silva; Suzanna L. Bailey; Torsten Witte; Timothy J. Vyse; Juha Kere; Christiane Pfeiffer; Scott Harvey; Andrew Wong; Sari Koskenmies; Oliver Hummel; Klaus Rohde; Reinhold E. Schmidt; Anna F. Dominiczak; Manfred Gahr; Thomas Hollis; Fred W. Perrino; Judy Lieberman; Norbert Hubner

TREX1 acts in concert with the SET complex in granzyme A–mediated apoptosis, and mutations in TREX1 cause Aicardi-Goutières syndrome and familial chilblain lupus. Here, we report monoallelic frameshift or missense mutations and one 3′ UTR variant of TREX1 present in 9/417 individuals with systemic lupus erythematosus but absent in 1,712 controls (P = 4.1 × 10−7). We demonstrate that two mutant TREX1 alleles alter subcellular targeting. Our findings implicate TREX1 in the pathogenesis of SLE.


PLOS Genetics | 2008

Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

Michelle M. A. Fernando; Christine Stevens; Emily Walsh; Philip L. De Jager; Philippe Goyette; Robert M. Plenge; Timothy J. Vyse; John D. Rioux

The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohns disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity.


Arthritis & Rheumatism | 2010

Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus.

Nicholas Simpson; Paul Gatenby; Anastasia Wilson; Shreya Malik; David A. Fulcher; Stuart G. Tangye; Harinder Manku; Timothy J. Vyse; Giovanna Roncador; Gavin A. Huttley; Christopher C. Goodnow; Carola G. Vinuesa; Matthew C. Cook

OBJECTIVE In the sanroque mouse model of lupus, pathologic germinal centers (GCs) arise due to increased numbers of follicular helper T (Tfh) cells, resulting in high-affinity anti-double-stranded DNA antibodies that cause end-organ inflammation, such as glomerulonephritis. The purpose of this study was to examine the hypothesis that this pathway could account for a subset of patients with systemic lupus erythematosus (SLE). METHODS An expansion of Tfh cells is a causal, and therefore consistent, component of the sanroque mouse phenotype. We validated the enumeration of circulating T cells resembling Tfh cells as a biomarker of this expansion in sanroque mice, and we performed a comprehensive comparison of the surface phenotype of circulating and tonsillar Tfh cells in humans. This circulating biomarker was enumerated in SLE patients (n = 46), Sjögrens syndrome patients (n = 17), and healthy controls (n = 48) and was correlated with disease activity and end-organ involvement. RESULTS In sanroque mice, circulating Tfh cells increased in proportion to their GC counterparts, making circulating Tfh cells a feasible human biomarker of this novel mechanism of breakdown in GC tolerance. In a subset of SLE patients (14 of 46), but in none of the controls, the levels of circulating Tfh cells (defined as circulating CXCR5+CD4+ cells with high expression of Tfh-associated molecules, such as inducible T cell costimulator or programmed death 1) were increased. This cellular phenotype did not vary with time, disease activity, or treatment, but it did correlate with the diversity and titers of autoantibodies and with the severity of end-organ involvement. CONCLUSION These findings in SLE patients are consistent with the autoimmune mechanism in sanroque mice and identify Tfh effector molecules as possible therapeutic targets in a recognizable subset of patients with SLE.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus

Robert R. Graham; Chieko Kyogoku; Snaevar Sigurdsson; Irina A. Vlasova; Leela Davies; Emily C. Baechler; Robert M. Plenge; Thearith Koeuth; Ward Ortmann; Geoffrey Hom; Jason W. Bauer; Clarence Gillett; Noël P. Burtt; Deborah S. Cunninghame Graham; Robert C. Onofrio; Michelle Petri; Iva Gunnarsson; Elisabet Svenungsson; Lars Rönnblom; Gunnel Nordmark; Peter K. Gregersen; Kathy L. Moser; Patrick M. Gaffney; Lindsey A. Criswell; Timothy J. Vyse; Ann-Christine Syvänen; Paul R. Bohjanen; Mark J. Daly; Timothy W. Behrens; David Altshuler

Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3′ UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.


Immunity | 2001

Evidence for an Interferon-Inducible Gene, Ifi202, in the Susceptibility to Systemic Lupus

Stephen J. Rozzo; John Allard; Divaker Choubey; Timothy J. Vyse; Shozo Izui; Gary Peltz; Brian L. Kotzin

The Nba2 locus is a major genetic contribution to disease susceptibility in the (NZB x NZW)F(1) mouse model of systemic lupus. We generated C57BL/6 mice congenic for this NZB locus, and these mice produced antinuclear autoantibodies characteristic of lupus. F(1) offspring of congenic and NZW mice developed high autoantibody levels and severe lupus nephritis similar to (NZB x NZW)F(1) mice. Expression profiling with oligonucleotide microarrays revealed only two differentially expressed genes, interferon-inducible genes Ifi202 and Ifi203, in congenic versus control mice, and both were within the Nba2 interval. Quantitative PCR localized increased Ifi202 expression to splenic B cells and non-T/non-B cells. These results, together with analyses of promoter region polymorphisms, strain distribution of expression, and effects on cell proliferation and apoptosis, implicate Ifi202 as a candidate gene for lupus.


Nature Genetics | 2008

A nonsynonymous functional variant in integrin-|[alpha]|M (encoded by ITGAM) is associated with systemic lupus erythematosus

Swapan K. Nath; Shizhong Han; Xana Kim-Howard; Jennifer A. Kelly; Parvathi Viswanathan; Gary S. Gilkeson; Wei Chen; Cheng Zhu; Rodger P. McEver; Robert P. Kimberly; Marta E. Alarcón-Riquelme; Timothy J. Vyse; Quan Zhen Li; Edward K. Wakeland; Joan T. Merrill; Judith A. James; Kenneth M. Kaufman; Joel M. Guthridge; John B. Harley

We identified and replicated an association between ITGAM (CD11b) at 16p11.2 and risk of systemic lupus erythematosus (SLE) in 3,818 individuals of European descent. The strongest association was at a nonsynonymous SNP, rs1143679 (P = 1.7 × 10−17, odds ratio = 1.78). We further replicated this association in two independent samples of individuals of African descent (P = 0.0002 and 0.003; overall meta-analysis P = 6.9 × 10−22). The genetic association between ITGAM and SLE implicates the αMβ2-integrin adhesion pathway in disease development.

Collaboration


Dive into the Timothy J. Vyse's collaboration.

Top Co-Authors

Avatar

Jennifer A. Kelly

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick M. Gaffney

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Robert P. Kimberly

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kenneth M. Kaufman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chaim O. Jacob

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B. Harley

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gary S. Gilkeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kathy L. Moser

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge