Timothy Kottke
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy Kottke.
The EMBO Journal | 2002
Sandrine Ruchaud; Nadia Korfali; Pascal Villa; Timothy Kottke; Colin Dingwall; Scott H. Kaufmann; William C. Earnshaw
To study the role of caspase‐6 during nuclear disassembly, we generated a chicken DT40 cell line in which both alleles of the caspase‐6 gene were disrupted. No obvious morphological differences were observed in the apoptotic process in caspase‐6‐ deficient cells compared with the wild type. However, examination of apoptosis in a cell‐free system revealed a block in chromatin condensation and apoptotic body formation when nuclei from HeLa cells expressing lamin A or lamin A‐transfected Jurkat cells were incubated in caspase‐6‐deficient apoptotic extracts. Transfection of exogenous caspase‐6 into the clone reversed this phenotype. Lamins A and C, which are caspase‐6‐only substrates, were cleaved by the wild‐type and heterozygous apoptotic extracts but not by the extracts lacking caspase‐6. Furthermore, the caspase‐6 inhibitor z‐VEID‐fmk mimicked the effects of caspase‐6 deficiency and prevented the cleavage of lamin A. Taken together, these observations indicate that caspase‐6 activity is essential for lamin A cleavage and that when lamin A is present it must be cleaved in order for the chromosomal DNA to undergo complete condensation during apoptotic execution.
Journal of Biological Chemistry | 1997
Luis M. Martins; Timothy Kottke; Peter W. Mesner; Guriqbal S. Basi; Sukanto Sinha; Normand Frigon; Eric Tatar; Jay S. Tung; Karin Bryant; Atsushi Takahashi; Phyllis A. Svingen; Benjamin J. Madden; Daniel J. McCormick; William C. Earnshaw; Scott H. Kaufmann
Recent genetic and biochemical studies have implicated cysteine-dependent aspartate-directed proteases (caspases) in the active phase of apoptosis. In the present study, three complementary techniques were utilized to follow caspase activation during the course of etoposide-induced apoptosis in HL-60 human leukemia cells. Immunoblotting revealed that levels of procaspase-2 did not change during etoposide-induced apoptosis, whereas levels of procaspase-3 diminished markedly 2-3 h after etoposide addition. At the same time, cytosolic peptidase activities that cleaved DEVD-aminotrifluoromethylcoumarin and VEID-aminomethylcoumarin increased 100- and 20-fold, respectively; but there was only a 1.5-fold increase in YVAD-aminotrifluoromethylcoumarin cleavage activity. Affinity labeling with N-(Nα-benzyloxycarbonylglutamyl-Nε-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone indicated that multiple active caspase species sequentially appeared in the cytosol during the first 6 h after the addition of etoposide. Analysis on one- and two-dimensional gels revealed that two species comigrated with caspase-6 and three comigrated with active caspase-3 species, suggesting that several splice or modification variants of these enzymes are active during apoptosis. Polypeptides that comigrate with the cytosolic caspases were also labeled in nuclei of apoptotic HL-60 cells. These results not only indicate that etoposide-induced apoptosis in HL-60 cells is accompanied by the selective activation of multiple caspases in cytosol and nuclei, but also suggest that other caspase precursors such as procaspase-2 are present but not activated during apoptosis.
Cancer Research | 2007
Rosa Maria Diaz; Feorillo Galivo; Timothy Kottke; Phonphimon Wongthida; Jian Qiao; Jill Thompson; Mikael Valdes; Glen N. Barber; Richard Vile
Relatively little attention has been paid to the role of virotherapy in promoting antitumor immune responses. Here, we show that CD8+ T cells are critical for the efficacy of intratumoral vesicular stomatitis virus virotherapy and are induced against both virally encoded and tumor-associated immunodominant epitopes. We tested three separate immune interventions to increase the frequency/activity of activated antitumoral T cells. Depletion of Treg had a negative therapeutic effect because it relieved suppression of the antiviral immune response, leading to early viral clearance. In contrast, increasing the circulating levels of tumor antigen-specific T cells using adoptive T cell transfer therapy, in combination with intratumoral virotherapy, generated significantly improved therapy over either adoptive therapy or virotherapy alone. Moreover, the incorporation of a tumor-associated antigen within the oncolytic vesicular stomatitis virus increased the levels of activation of naïve T cells against the antigen, which translated into increased antitumor therapy. Therefore, our results show that strategies which enhance immune activation against tumor-associated antigens can also be used to enhance the efficacy of virotherapy.
Clinical Cancer Research | 2008
Jian Qiao; Hongxun Wang; Timothy Kottke; Christine A. White; Katie Twigger; Rosa Maria Diaz; Jill Thompson; Peter Selby; Johann S. de Bono; Alan Melcher; Hardev Pandha; Matt Coffey; Richard G. Vile; Kevin J. Harrington
Purpose: The purpose of the present study was to investigate whether it is possible to achieve truly systemic delivery of oncolytic reovirus, in immunocompetent hosts, using cyclophosphamide to overcome some of the barriers to effective intratumoral delivery and replication of i.v. injected virus. Experimental Design: I.v. delivery of reovirus was combined with different regimens of i.p. administered cyclophosphamide in C57Bl/6 mice bearing established s.c. B16 tumors. Intratumoral viral replication, tumor size, and survival were measured along with levels of neutralizing antibody (NAb) in the blood. Finally, differential toxicities of the virus/cyclophosphamide regimens were monitored through viral replication in systemic organs, survival, and cardiac damage. Results: Repeated i.v. injection of reovirus was poorly effective at seeding intratumoral viral replication/oncolysis. However, by combining i.v. virus with cyclophosphamide, viral titers of between 107 and 108 plaque-forming units per milligram were recovered from regressing tumors. Doses of cyclophosphamide that ablated NAb were associated with severe toxicities, characterized by viral replication in systemic organs—toxicities that are mirrored by repeated reovirus injections into B-cell knockout mice. Next, we restructured the dosing of cyclophosphamide and i.v. virus such that a dose of 3 mg cyclophosphamide was administered 24 h before reovirus injection, and this schedule was repeated every 6 days. Using this protocol, high levels of intratumoral viral access and replication (∼107 plaque-forming units per milligram tumor) were maintained along with systemically protective levels of NAb and only very mild, non–life-threatening toxicity. Conclusion: NAb to oncolytic viruses play a dual role in the context of systemic viral delivery; on one hand, they hinder repeated administration of virus but on the other, they provide an important safety mechanism by which virus released from vigorous intratumoral replication is neutralized before it can disseminate and cause toxicity. These data support the use of cyclophosphamide to modulate, but not ablate, patient NAb, in development of carefully controlled clinical trials of the systemic administration of oncolytic viruses.
Nature Medicine | 2008
Jian Qiao; Timothy Kottke; Candice Willmon; Feorillo Galivo; Phonphimon Wongthida; Rosa Maria Diaz; Jill Thompson; Pamela Ryno; Glen N. Barber; John D. Chester; Peter Selby; Kevin J. Harrington; Alan Melcher; Richard Vile
In many common cancers, dissemination of secondary tumors via the lymph nodes poses the most significant threat to the affected individual. Metastatic cells often reach the lymph nodes by mimicking the molecular mechanisms used by hematopoietic cells to traffic to peripheral lymphoid organs. Therefore, we exploited naive T cell trafficking in order to chaperone an oncolytic virus to lymphoid organs harboring metastatic cells. Metastatic burden was initially reduced by viral oncolysis and was then eradicated, as tumor cell killing in the lymph node and spleen generated protective antitumor immunity. Lymph node purging of tumor cells was possible even in virus-immune mice. Adoptive transfer of normal T cells loaded with oncolytic virus into individuals with cancer would be technically easy to implement both to reduce the distribution of metastases and to vaccinate the affected individual in situ against micrometastatic disease. As such, this adoptive transfer could have a great therapeutic impact, in the adjuvant setting, on many different cancer types.
Journal of Clinical Investigation | 2002
April L. Blajeski; Vy A. Phan; Timothy Kottke; Scott H. Kaufmann
Microtubule-depolymerizing agents are widely used to synchronize cells, screen for mitotic checkpoint defects, and treat cancer. The present study evaluated the effects of these agents on normal and malignant human breast cell lines. After treatment with 1 μM nocodazole, seven of ten breast cancer lines (type A cells) arrested in mitosis, whereas the other three (type B cells) did not. Similar effects were observed with 100 nM vincristine or colchicine. Among five normal mammary epithelial isolates, four exhibited type A behavior and one exhibited type B behavior. Further experiments revealed that the type B cells exhibited a biphasic dose-response curve, with mitotic arrest at low drug concentrations (100 nM nocodazole or 6 nM vincristine) that failed to depolymerize microtubules and a p53-independent p21waf1/cip1-associated G1 and G2 arrest at higher concentrations (1 μM nocodazole or 100 nM vincristine) that depolymerized microtubules. Collectively, these observations provide evidence for coupling of premitotic cell-cycle progression to microtubule integrity in some breast cancer cell lines (representing a possible “microtubule integrity checkpoint”) and suggest a potential explanation for the recently reported failure of some cancer cell lines to undergo nocodazole-induced mitotic arrest despite intact mitotic checkpoint proteins.
Clinical Cancer Research | 2008
Robin Prestwich; Fiona Errington; Elizabeth Ilett; Ruth Morgan; Karen Scott; Timothy Kottke; Jill Thompson; Ewan E. Morrison; Kevin J. Harrington; Hardev Pandha; Peter Selby; Richard G. Vile; Alan Melcher
Purpose: Early clinical trials are under way exploring the direct oncolytic potential of reovirus. This study addresses whether tumor infection by reovirus is also able to generate bystander, adaptive antitumor immunity. Experimental Design: Reovirus was delivered intravenously to C57BL/6 mice bearing lymph node metastases from the murine melanoma, B16-tk, with assessment of nodal metastatic clearance, priming of antitumor immunity against the tumor-associated antigen tyrosinase-related protein-2, and cytokine responses. In an in vitro human system, the effect of reovirus infection on the ability of Mel888 melanoma cells to activate and load dendritic cells for cytotoxic lymphocyte (CTL) priming was investigated. Results: In the murine model, a single intravenous dose of reovirus reduced metastatic lymph node burden and induced antitumor immunity (splenocyte response to tyrosinase-related protein-2 and interleukin-12 production in disaggregated lymph nodes). In vitro human assays revealed that uninfected Mel888 cells failed to induce dendritic cell maturation or support priming of an anti-Mel888 CTL response. In contrast, reovirus-infected Mel888 cells (reo-Mel) matured dendritic cells in a reovirus dose-dependent manner. When cultured with autologous peripheral blood lymphocytes, dendritic cells loaded with reo-Mel induced lymphocyte expansion, IFN-γ production, specific anti-Mel888 cell cytotoxicity, and cross-primed CD8+ T cells specific against the human tumor-associated antigen MART-1. Conclusion: Reovirus infection of tumor cells reduces metastatic disease burden and primes antitumor immunity. Future clinical trials should be designed to explore both direct cytotoxic and immunotherapeutic effects of reovirus.
Molecular Therapy | 2009
Candice Willmon; Kevin J. Harrington; Timothy Kottke; Robin Prestwich; Alan Melcher; Richard Vile
Oncolytic viruses delivered directly into the circulation face many hazards that impede their localization to, and infection of, metastatic tumors. Such barriers to systemic delivery could be overcome if couriers, which confer both protection, and tumor localization, to their viral cargoes, could be found. Several preclincal studies have shown that viruses can be loaded into, or onto, different types of cells without losing the biological activity of either virus or cell carrier. Importantly, such loading can significantly protect the viruses from immune-mediated virus-neutralizing activities, including antiviral antibody. Moreover, an impressive portfolio of cellular vehicles, which have some degree of tropism for tumor cells themselves, or for the biological properties associated with the tumor stroma, is already available. Therefore, it will soon be possible to initiate clinical protocols to test the hypopthesis that cell-mediated delivery can permit efficient shipping of oncolytic viruses from the loading bay (the production laboratory) directly to the tumor in immune-competent patients with metastatic disease.
Nature Biotechnology | 2004
Gregory A. Daniels; Luis Sanchez-Perez; Rosa Maria Diaz; Timothy Kottke; Jill Thompson; Maoyi Lai; Michael J. Gough; Mahzuz Karim; Andrew Bushell; Heung Chong; Alan Melcher; Kevin J. Harrington; Richard Vile
We describe a simple technology used to cure an established metastatic disease. Intradermal injection of plasmid DNA encoding a transcriptionally targeted cytotoxic gene, along with hsp70, not only promoted tissue-specific, inflammatory killing of normal melanocytes, but also induced a CD8+ T-cell–dependent, antigen-specific response in mice that eradicated systemically established B16 tumors. This CD8+ T cell response was subsequently suppressed in vivo within a few days. The data demonstrate that deliberate destruction of normal tissue can be exploited to generate immunity against a malignant disease originating from that tissue. This approach obviates the need to identify tumor antigens and does not require complex isolation of tumor cells or their derivatives. In addition, it provides a model system for studying the mechanisms underlying the etiology and control of autoimmune diseases. Finally, despite targeting normal tissue, therapy could be separated from development of overt autoimmune symptoms, suggesting that the strategy may be valuable against tumors derived from both non-essential and essential tissue types.*Note: In the version of this article originally published online, the name of one of the authors was spelled incorrectly. Mayoi Lai should be Maoyi Lai. This mistake has been corrected in the HTML version and will appear correctly in print.
Gastroenterology | 1998
William E. Karnes; Shaun G. Weller; Philip N. Adjei; Timothy Kottke; Kahlil S. Glenn; Gregory J. Gores; Scott H. Kaufmann
BACKGROUND & AIMS The epidermal growth factor receptor (EGFR) is under investigation as a therapeutic target for cancers. Colon cancer cell lines are variably dependent on autocrine stimulation of EGFR. We therefore examined the effects of a selective EGFR tyrosine kinase inhibitor, PD 153035, on proliferation and survival of five colon cancer cell lines whose autonomous proliferation is either EGFR ligand dependent or EGFR ligand independent. METHODS Effects of inhibitors were screened by MTS growth assays, [3H]thymidine incorporation, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay, fluorescence microscopy, immunoblotting, and in vitro protease assays. RESULTS PD 153035 caused dose-dependent cytostasis (200 nmol/L to 1 micromol/L) and apoptosis (>10 micromol/L) in ligand-dependent cell lines and caused variable apoptosis (>10 micromol/L) but no cytostasis in ligand-independent cell lines. Apoptosis induced by 10 micromol/L PD 153035 was not associated with induction of p53 protein expression but was accompanied by activation of caspases that cleave poly(ADP-ribose) polymerase, lamin B1, and Bcl-2. Inhibition of caspase 3-like protease activity by DEVD-fluoromethylketone significantly delayed the onset of PD 153035-induced apoptosis. CONCLUSIONS The EGFR tyrosine kinase inhibitor PD 153035 induces cytostasis and caspase-dependent apoptosis in EGFR ligand-dependent colon cancer cell lines. These observations encourage further investigation of EGFR tyrosine kinase inhibitors for treatment of colorectal neoplasms.