Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy M. Gersch is active.

Publication


Featured researches published by Timothy M. Gersch.


Vision Research | 2004

Dynamic allocation of visual attention during the execution of sequences of saccades

Timothy M. Gersch; Eileen Kowler; Barbara Anne Dosher

Laboratory tasks used to study vision and attention usually require steady fixation, while natural visual processing occurs during the brief pauses between successive saccades. We studied vision and attentional allocation during intersaccadic pauses as subjects made repetitive sequences of saccades. Displays contained six outline squares located along the perimeter of an imaginary circle (diam 4 degrees). Saccades were made in sequence to every other square. The visual task was to identify the orientation (2AFC) of a Gabor test stimulus that appeared briefly (91 ms) along with superimposed noise in one of the squares during a randomly selected intersaccadic pause. Gabor location was cued in advance and noise frames were presented in all squares. Contrast thresholds during intersaccadic pauses were as much as 2-3 times higher than during steady fixation with comparable cueing. Thresholds improved over time during the intersaccadic pause, and the lowest extrafoveal thresholds (statistically indistinguishable from those at the same locations during steady fixation) were found for the location that was to be the target of the next saccade in the sequence. These results show that vision during intersaccadic pauses varies over space and time due to changes in the distribution of attention, as well as to visual suppression that may be related to the execution of the saccades themselves. Generation of sequences of accurate saccades encouraged a strategy of attentional allocation in which resources were dedicated primarily to the goal of the next saccade, leaving little attention for processing objects at other locations.


Vision Research | 2012

Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory and the control of saccades

Min Zhao; Timothy M. Gersch; Brian S. Schnitzer; Barbara Anne Dosher; Eileen Kowler

Saccadic eye movements and perceptual attention work in a coordinated fashion to allow selection of the objects, features or regions with the greatest momentary need for limited visual processing resources. This study investigates perceptual characteristics of pre-saccadic shifts of attention during a sequence of saccades using the visual manipulations employed to study mechanisms of attention during maintained fixation. The first part of this paper reviews studies of the connections between saccades and attention, and their significance for both saccadic control and perception. The second part presents three experiments that examine the effects of pre-saccadic shifts of attention on vision during sequences of saccades. Perceptual enhancements at the saccadic goal location relative to non-goal locations were found across a range of stimulus contrasts, with either perceptual discrimination or detection tasks, with either single or multiple perceptual targets, and regardless of the presence of external noise. The results show that the preparation of saccades can evoke a variety of attentional effects, including attentionally-mediated changes in the strength of perceptual representations, selection of targets for encoding in visual memory, exclusion of external noise, or changes in the levels of internal visual noise. The visual changes evoked by saccadic planning make it possible for the visual system to effectively use saccadic eye movements to explore the visual environment.


Vision Research | 2009

Attention during sequences of saccades along marked and memorized paths.

Timothy M. Gersch; Eileen Kowler; Brian S. Schnitzer; Barbara Anne Dosher

Natural scenes are explored by combinations of saccadic eye movements and shifts of attention. The mechanisms that coordinate attention and saccades during ordinary viewing are not well understood because studies linking saccades and attention have focused mainly on single saccades made in isolation. This study used an orientation discrimination task to examine attention during sequences of saccades made through an array of targets and distractors. Perceptual measures showed that attention was distributed along saccadic paths when the paths were marked by color cues. When paths were followed from memory, attention rarely spread beyond the goal of the upcoming saccade. These different distributions of attention suggest the involvement of separate processes of attentional control during saccadic planning, one triggered by top-down selection of the saccadic target, and the other by activation linked to visual mechanisms not tied directly to saccadic planning. The concurrent activity of both processes extends the effective attentional field without compromising the accuracy, precision, or timing of saccades.


Vision Research | 2007

The relationship between spatial pooling and attention in saccadic and perceptual tasks

Elias H. Cohen; Brian S. Schnitzer; Timothy M. Gersch; Manish Singh; Eileen Kowler

Saccades aimed at spatially extended targets land reliably at central locations determined by pooling information across the target shape [Melcher, D., & Kowler, E. (1999). Shape, surfaces and saccades. Vision Research, 39, 2929-2946; Vishwanath, D., & Kowler, E. (2003). Localization of shapes: Eye movements and perception compared. Vision Research, 43, 1637-1653]. Previous findings of saccadic errors when attempting to look at a target in the midst of distractors encouraged suggestions that pooling occurs indiscriminately, with little or no influence of a selective filter to eliminate the influence of nearby distractors. To determine the effectiveness of filtering, saccadic localization was studied for saccades made to a set of target elements (discs) interleaved with an equivalent set of distractors of a different color. With such interleaved elements, selection and spatial pooling are constrained to occur over the same spatial region. The results showed that filtering was effective and saccadic landing position was determined mainly by the target elements. Concurrent perceptual judgments made about the same stimuli (estimating the mean size of either target or distractor discs) showed better performance for the target discs than distractors, confirming that perceptual attention was allocated to the set of target elements. These results: (1) support the role of attention in setting the input to the spatial pooling process that guides saccades to spatially extended targets, and (2) show that perceptual judgments of mean value, often thought to impose modest attentional demands, are not immune to the constraints of this pre-saccadic filter.


Vision Research | 2009

Attention during active visual tasks: Counting, pointing, or simply looking

John Wilder; Eileen Kowler; Brian S. Schnitzer; Timothy M. Gersch; Barbara Anne Dosher

Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in real-world tasks saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform three free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments.


Journal of Vision | 2008

Visual memory during pauses between successive saccades.

Timothy M. Gersch; Eileen Kowler; Brian S. Schnitzer; Barbara Anne Dosher

Selective attention is closely linked to eye movements. Prior to a saccade, attention shifts to the saccadic goal at the expense of surrounding locations. Such a constricted attentional field, while useful to ensure accurate saccades, constrains the spatial range of high-quality perceptual analysis. The present study showed that attention could be allocated to locations other than the saccadic goal without disrupting the ongoing pattern of saccades. Saccades were made sequentially along a color-cued path. Attention was assessed by a visual memory task presented during a random pause between successive saccades. Saccadic planning had several effects on memory: (1) fewer letters were remembered during intersaccadic pauses than during maintained fixation; (2) letters appearing on the saccadic path, including locations previously examined, could be remembered; off-path performance was near chance; (3) memory was better at the saccadic target than at all other locations, including the currently fixated location. These results show that the distribution of attention during intersaccadic pauses results from a combination of top-down enhancement at the saccadic target coupled with a more automatic allocation of attention to selected display locations. This suggests that the visual system has mechanisms to control the distribution of attention without interfering with ongoing saccadic programming.


PLOS ONE | 2014

Neural Correlates of Temporal Credit Assignment in the Parietal Lobe

Timothy M. Gersch; Nicholas C. Foley; Ian Eisenberg; Jacqueline Gottlieb


Perception | 2005

Attentional enhancement along the path of a sequence of saccades

Timothy M. Gersch; Brian S. Schnitzer; Priyesh S. Sanghvi; Barbara Anne Dosher; Eileen Kowler


Archive | 2015

''Remapping in Human Visual Cortex'' . Focus on Integrates Information Across Saccades From a Different Point of View: Extrastriate Cortex

Timothy M. Gersch; Eileen Kowler; Brian S. Schnitzer; Barbara Anne Dosher


Journal of Vision | 2012

Exploring the environment with eye movements and attention

Eileen Kowler; Min Zhao; Timothy M. Gersch; John Wilder; Cordelia D. Aitkin; Barbara Anne Dosher

Collaboration


Dive into the Timothy M. Gersch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge