Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy M. Palmer is active.

Publication


Featured researches published by Timothy M. Palmer.


Molecular and Cellular Biology | 2006

Exchange protein activated by cyclic AMP (Epac)-mediated induction of suppressor of cytokine signaling 3 (SOCS-3) in vascular endothelial cells.

William A. Sands; Hayley D. Woolson; Gillian R. Milne; Claire Rutherford; Timothy M. Palmer

ABSTRACT Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Rα/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.


Expert Opinion on Investigational Drugs | 2012

Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation

Ian P. Salt; Timothy M. Palmer

Introduction: AMP-activated protein kinase (AMPK) is the downstream component of a serine/threonine protein kinase cascade involved in the regulation of metabolism. Many studies have also revealed that AMPK activation can exert significant anti-inflammatory and immunosuppressive effects in a variety of cell types and models of inflammatory/autoimmune disease. Because metformin, an AMPK activator that is a favored first-line therapeutic option for type 2 diabetes, may confer benefits in chronic inflammatory diseases and cancers independent of its ability to normalize blood glucose, there is now considerable interest in identifying and exploiting AMPKs anti-inflammatory effects. Areas covered: The authors provide a background to AMPK signaling and describe the pro-inflammatory signaling pathways and processes shown to be regulated by AMPK activation. Expert opinion: Identification of AMPK subunits responsible for specific anti-inflammatory effects, and a molecular understanding of the mechanisms involved, will be necessary to exploit AMPK pathway activation in acute and chronic inflammatory disease settings while minimizing adverse reactions due to deregulation of AMPKs wide-ranging effects on metabolism.


Journal of Biological Chemistry | 2008

Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene.

Stephen J. Yarwood; Gillian Borland; William A. Sands; Timothy M. Palmer

The prototypical second messenger cAMP is a key regulator of immune and inflammatory responses. Its ability to inhibit interleukin (IL)-6 responses is due to induction of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator of IL-6 receptor signaling. We have determined previously that SOCS-3 induction by cAMP occurs independently of cAMP-dependent protein kinase, instead requiring the recently identified cAMP sensor exchange protein activated by cAMP 1 (EPAC1). Here we present evidence to suggest that the C/EBP family of transcription factors link EPAC1 activation to SOCS-3 induction. Firstly, selective activation of EPAC in human umbilical vein endothelial cells increased C/EBP DNA binding activity and recruitment of C/EBPβ to the SOCS-3 promoter. Secondly, knockdown of C/EBPβ and -δ isoforms abolished both SOCS-3 induction and inhibition of IL-6 signaling in response to cAMP. Thirdly, overexpression of C/EBPα, -β, or -δ potentiated EPAC-mediated accumulation of SOCS-3. Finally, these effects were not restricted to human umbilical vein endothelial cells, because similar phenomena were observed in murine embryonic fibroblasts in which C/EBPβ or δ had been deleted. In summary, our findings constitute the first description of an EPAC-C/EBP pathway that can control cAMP-mediated changes in gene expression independently of protein kinase A.


The Scientific World Journal | 2011

Anti-Inflammatory and Immunosuppressive Effects of the A2A Adenosine Receptor

Gillian R. Milne; Timothy M. Palmer

The production of adenosine represents a critical endogenous mechanism for regulating immune and inflammatory responses during conditions of stress, injury, or infection. Adenosine exerts predominantly protective effects through activation of four 7-transmembrane receptor subtypes termed A1, A2A, A2B, and A3, of which the A2A adenosine receptor (A2AAR) is recognised as a major mediator of anti-inflammatory responses. The A2AAR is widely expressed on cells of the immune system and numerous in vitro studies have identified its role in suppressing key stages of the inflammatory process, including leukocyte recruitment, phagocytosis, cytokine production, and immune cell proliferation. The majority of actions produced by A2AAR activation appear to be mediated by cAMP, but downstream events have not yet been well characterised. In this article, we review the current evidence for the anti-inflammatory effects of the A2AAR in different cell types and discuss possible molecular mechanisms mediating these effects, including the potential for generalised suppression of inflammatory gene expression through inhibition of the NF-κB and JAK/STAT proinflammatory signalling pathways. We also evaluate findings from in vivo studies investigating the role of the A2AAR in different tissues in animal models of inflammatory disease and briefly discuss the potential for development of selective A2AAR agonists for use in the clinic to treat specific inflammatory conditions.


Circulation | 2006

Regulated Overexpression of the A1-Adenosine Receptor in Mice Results in Adverse but Reversible Changes in Cardiac Morphology and Function

Hajime Funakoshi; Tung O. Chan; Julie C. Good; Joseph R. Libonati; Jarkko Piuhola; Xiongwen Chen; Scott M. MacDonnell; Ling L. Lee; David E. Herrmann; Jin Zhang; Jeffrey S. Martini; Timothy M. Palmer; Atsushi Sanbe; Jeffrey Robbins; Steven R. Houser; Walter J. Koch; Arthur M. Feldman

Background— Both the A1- and A3-adenosine receptors (ARs) have been implicated in mediating the cardioprotective effects of adenosine. Paradoxically, overexpression of both A1-AR and A3-AR is associated with changes in the cardiac phenotype. To evaluate the temporal relationship between AR signaling and cardiac remodeling, we studied the effects of controlled overexpression of the A1-AR using a cardiac-specific and tetracycline-transactivating factor–regulated promoter. Methods and Results— Constitutive A1-AR overexpression caused the development of cardiac dilatation and death within 6 to 12 weeks. These mice developed diminished ventricular function and decreased heart rate. In contrast, when A1-AR expression was delayed until 3 weeks of age, mice remained phenotypically normal at 6 weeks, and >90% of the mice survived at 30 weeks. However, late induction of A1-AR still caused mild cardiomyopathy at older ages (20 weeks) and accelerated cardiac hypertrophy and the development of dilatation after pressure overload. These changes were accompanied by gene expression changes associated with cardiomyopathy and fibrosis and by decreased Akt phosphorylation. Discontinuation of A1-AR induction mitigated cardiac dysfunction and significantly improved survival rate. Conclusions— These data suggest that robust constitutive myocardial A1-AR overexpression induces a dilated cardiomyopathy, whereas delaying A1-AR expression until adulthood ameliorated but did not eliminate the development of cardiac pathology. Thus, the inducible A1-AR transgenic mouse model provides novel insights into the role of adenosine signaling in heart failure and illustrates the potentially deleterious consequences of selective versus nonselective activation of adenosine-signaling pathways in the heart.


British Journal of Pharmacology | 2009

Suppression of inflammatory and immune responses by the A2A adenosine receptor : an introduction

Timothy M. Palmer; Mike Trevethick

The purine nucleoside adenosine has been described as a ‘retaliatory metabolite’ by virtue of its ability to function in an autocrine manner to modify the activity of a range of cell types following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by the binding of adenosine to any of four G‐protein‐coupled adenosine receptors. Most of the anti‐inflammatory effects of adenosine have been assigned to the adenosine A2A receptor subtype, which is expressed in many immune and inflammatory cells. In this brief article, we will outline the growing evidence to support the hypothesis that the development of agonists selective for the A2A receptor is an effective strategy for suppressing the exaggerated inflammatory responses associated with many diseases by virtue of the receptors ability to inhibit multiple pro‐inflammatory signalling cascades.


Journal of Biological Chemistry | 2009

Activation of Protein Kinase Cα by EPAC1 Is Required for the ERK- and CCAAT/Enhancer-binding Protein β-dependent Induction of the SOCS-3 Gene by Cyclic AMP in COS1 Cells

Gillian Borland; Rebecca J. Bird; Timothy M. Palmer; Stephen J. Yarwood

We recently found that induction of the anti-inflammatory SOCS-3 gene by cyclic AMP occurs through novel cyclic AMP-dependent protein kinase-independent mechanisms involving activation of CCAAT/enhancer-binding protein (C/EBP) transcription factors, notably C/EBPβ, by the cyclic AMP GEF EPAC1 and the Rap1 GTPase. In this study we show that down-regulation of phospholipase (PL) Cϵ with small interfering RNA or blockade of PLC activity with chemical inhibitors ablates exchange protein directly activated by cyclic AMP (EPAC)-dependent induction of SOCS-3 in COS1 cells. Consistent with this, stimulation of cells with 1-oleoyl-2-acetyl-sn-glycerol and phorbol 12-myristate 13-acetate, both cell-permeable analogues of the PLC product diacylglycerol, are sufficient to induce SOCS-3 expression in a Ca2+-dependent manner. Moreover, the diacylglycerol- and Ca2+-dependent protein kinase C (PKC) isoform PKCα becomes activated following cyclic AMP elevation or EPAC stimulation. Conversely, down-regulation of PKC activity with chemical inhibitors or small interfering RNA-mediated depletion of PKCα or -δ blocks EPAC-dependent SOCS-3 induction. Using the MEK inhibitor U0126, we found that activation of ERK MAPKs is essential for SOCS-3 induction by either cyclic AMP or PKC. C/EBPβ is known to be phosphorylated and activated by ERK. Accordingly, we found ERK activation to be essential for cyclic AMP-dependent C/EBP activation and C/EBPβ-dependent SOCS-3 induction by cyclic AMP and PKC. Moreover, overexpression of a mutant form of C/EBPβ (T235A), which lacks the ERK phosphorylation site, blocks SOCS-3 induction by cyclic AMP and PKC in a dominant-negative manner. Together, these results indicate that EPAC mediates novel regulatory cross-talk between the cyclic AMP and PKC signaling pathways leading to ERK- and C/EBPβ-dependent induction of the SOCS-3 gene.


Cellular Signalling | 2009

Selective inhibition of cytokine-activated extracellular signal-regulated kinase by cyclic AMP via Epac1-dependent induction of suppressor of cytokine signalling-3.

Hayley D. Woolson; Victoria S. Thomson; Claire Rutherford; Stephen J. Yarwood; Timothy M. Palmer

Here we demonstrate that elevation of cyclic AMP (cAMP) levels in human umbilical vein endothelial cells (HUVECs) specifically attenuates ERK1,2 activation in response to either leptin or a soluble interleukin IL-6 receptor-alpha/IL-6 (sIL-6R alpha/IL-6) trans-signalling complex but not protein kinase C activator phorbol 12-myristate 13-acetate. The inhibitory effects of cAMP on sIL-6R alpha/IL-6-stimulated phosphorylation of ERK1,2 and STAT3 were abolished by either short interfering (si) RNA-mediated knockdown or genetic ablation of suppressor of cytokine signalling-3 (SOCS-3). The inhibitory effect of cAMP could not be reversed by inhibition of cAMP-dependent protein kinase (PKA) but was blocked by depletion of the alternative intracellular cAMP sensor exchange protein activated by cAMP 1 (Epac1), which is also required to observe SOCS-3 accumulation in response to cAMP. Interestingly, the ability of cAMP elevation to inhibit IL-6 signalling was blocked by ERK inhibition. Consistent with this observation, cAMP elevation in HUVECs produced a transient yet robust activation of ERK, and subsequent phosphorylation of transcription factor C/EBP beta, both of which were resistant to PKA inhibition. However, siRNA depletion and immunoblotting experiments revealed that neither Epac1 nor Epac2 contributed to the PKA-independent activation of ERK1,2 observed following cAMP elevation. Together, these observations suggest that while SOCS-3 induction and subsequent inhibition of cytokine-mediated phosphorylation of ERK1,2 and STAT3 in response to cAMP require Epac1 and a transient PKA-independent activation of the ERK pathway, these two events are controlled by distinct mechanisms. In addition, it reveals a novel Epac-dependent mechanism by which cAMP can specifically inhibit ERK in response to cytokine receptor activation.


Cell Death and Disease | 2013

Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1

Claire Rutherford; S. Childs; Jan Ohotski; Liane McGlynn; M. Riddick; S. MacFarlane; D. Tasker; Susan Pyne; Nigel J. Pyne; Joanne Edwards; Timothy M. Palmer

Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.


British Journal of Pharmacology | 2009

Novel interactions between the 5-HT transporter, 5-HT1B receptors and Rho kinase in vivo and in pulmonary fibroblasts

Kirsty M. Mair; Margaret R. MacLean; Ian Morecroft; Yvonne Dempsie; Timothy M. Palmer

While the 5‐HT and Rho‐kinase (ROCK) pathways have been implicated in the development of pulmonary arterial hypertension (PAH), the nature of any interactions between them remain unclear. This study investigated a role for ROCK in 5‐HT‐regulated proliferative responses in lung fibroblasts in vivo and in vitro.

Collaboration


Dive into the Timothy M. Palmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge