Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy Norton is active.

Publication


Featured researches published by Timothy Norton.


Proceedings of SPIE | 2012

The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability

Andrew Szentgyorgyi; Anna Frebel; Gabor Furesz; Edward Hertz; Timothy Norton; Jacob L. Bean; Henry Bergner; Jeffrey D. Crane; Janet Evans; Ian Evans; T. Gauron; Andrés Jordán; Sang Park; Alan Uomoto; Stuart Barnes; William N. Davis; M. Eisenhower; Harland Epps; Dani Guzman; Kenneth McCracken; Mark Ordway; David Plummer; William A. Podgorski; David R. Weaver

The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has undergone conceptual design for consideration as a first light instrument at the Giant Magellan Telescope. GCLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability. We have defined the performance envelope of G-CLEF to address several of the highest science priorities in the Decadal Survey1. The spectrograph optical design is an asymmetric, two-arm, white pupil design. The asymmetric white pupil design is adopted to minimize the size of the refractive camera lenses. The spectrograph beam is nominally 300 mm, reduced to 200 mm after dispersion by the R4 echelle grating. The peak efficiency of the spectrograph is >35% and the passband is 3500-9500Å. The spectrograph is primarily fed with three sets of fibers to enable three observing modes: High-Throughput, Precision-Abundance and PRV. The respective resolving powers of these modes are R~ 25,000, 40,000 and 120,000. We also anticipate having an R~40,000 Multi-object Spectroscopy mode with a multiplex of ~40 fibers. In PRV mode, each of the seven 8.4m GMT primary mirror sub-apertures feeds an individual fiber, which is scrambled after pupil-slicing. The goal radial velocity precision of G-CLEF is ∂V <10 cm/sec radial. In this paper, we provide a flowdown from fiducial science programs to design parameters. We discuss the optomechanical, electrical, structural and thermal design and present a roadmap to first light at the GMT.


Proceedings of SPIE | 2012

A prototype phasing camera for the Giant Magellan Telescope

Srikrishna Kanneganti; Brian A. McLeod; Mark Ordway; John B. Roll; Stephen A. Shectman; Antonin H. Bouchez; Johanan L. Codona; Roger Eng; Thomas Gauron; Felix Handte; Timothy Norton; Phil Streechon; David R. Weaver

Achieving the diffraction limit with the adaptive optics system of the 25m Giant Magellan Telescope will require that the 7 pairs of mirror segments be in phase. Phasing the GMT is made difficult because of the 30-40cm gaps between the primary mirror segments. These large gaps result in atmospheric induced phase errors making optical phasing difficult at visible wavelengths. The large gaps between the borosilicate mirror segments also make an edge sensing system prone to thermally induced instability. We describe an optical method that uses twelve 1.5-m square subapertures that span the segment boundaries. The light from each subaperture is mapped onto a MEMS mirror segment and then a lenslet array which are used to stabilize the atmospherically induced image motion. Centroids for stabilization are measured at 700nm. The piston error is measured from the fringes visible in each of the 12 stabilized images at 2.2 microns. By dispersing the fringes we can resolve 2π phase ambiguities. We are constructing a prototype camera to be deployed at the 6.5m Magellan Clay telescope.


Proceedings of SPIE | 2014

A novel systems engineering approach to the design of a precision radial velocity spectrograph: the GMT-Consortium Large EarthFinder (G-CLEF)

William A. Podgorski; Jacob L. Bean; Henry Bergner; Moo-Young Chun; Jeffrey D. Crane; Ian Evans; Janet Evans; Gabor Furesz; Dani Guzman; Kang-Min Kim; Kenneth McCracken; Mark Mueller; Timothy Norton; Chan Park; Sang Park; David Plummer; Andrew Szentgyorgyi; Alan Uomoto; In-Soo Yuk

One of the first light instruments for the Giant Magellan Telescope (GMT) will be the GMT-Consortium Large Earth Finder (G-CLEF). It is an optical band echelle spectrograph that is fiber fed to enable high stability. One of the key capabilities of G-CLEF will be its extremely precise radial velocity (PRV) measurement capability. The RV precision goal is 10 cm/sec, which is expected to be achieved with advanced calibration methods and the use of the GMT adaptive optics system. G-CLEF, as part of the GMT suite of instruments, is being designed within GMTs automated requirements management system. This includes requirements flow down, traceability, error budgeting, and systems compliance. Error budgeting is being employed extensively to help manage G-CLEF technical requirements and ensure that the top level requirements are met efficiently. In this paper we discuss the G-CLEF error budgeting process, concentrating on the PRV precision and instrument throughput budgets. The PRV error budgeting process is covered in detail, as we are taking a detailed systems error budgeting approach to the PRV requirement. This has proven particularly challenging, as the precise measurement of radial velocity is a complex process, with error sources that are difficult to model and a complex calibration process that is integral to the RV measurement. The PRV budget combines traditional modeling and analysis techniques, where applicable, with semi-empirical techniques, as necessary. Extrapolation from existing PRV instruments is also used in the budgeting process.


Proceedings of SPIE | 2012

The Transneptunian Automated Occultation Survey (TAOS II)

M. J. Lehner; Shiang-Yu Wang; Charles Alcock; Kem Holland Cook; Gabor Furesz; John C. Geary; D. Hiriart; Paul T. P. Ho; William H. Lee; Frank Melsheimer; Timothy Norton; Mauricio Reyes-Ruíz; Michael G. Richer; Andrew Szentgyorgyi; Wei-Ling Yen; Zhi-Wei Zhang

The Transneptunian Automated Occultation Survey (TAOS II) will aim to detect occultations of stars by small ( 1 km diameter) objects in the Solar System and beyond. Such events are very rare (< 10−3 events per star per year) and short in duration ( 200 ms), so many stars must be monitored at a high readout cadence. TAOS II will operate three 1.3 meter telescopes at the Observatorio Astron´omico Nacional at San Pedro Martir in Baja California, Mexico. With a 2.3 square degree field of view and a high speed camera comprising CMOS imagers, the survey will monitor 10,000 stars simultaneously with all three telescopes at a readout cadence of 20 Hz.


Proceedings of SPIE | 2014

A preliminary design for the GMT-Consortium Large Earth Finder (G-CLEF)

Andrew Szentgyorgyi; Stuart I. Barnes; Jacob L. Bean; Bruce C. Bigelow; Antonin H. Bouchez; Moo-Young Chun; Jeffrey D. Crane; Harland W. Epps; Ian Evans; Janet Evans; Anna Frebel; Gabor Furesz; Alex Glenday; Dani Guzman; Tyson Hare; Bi-Ho Jang; Jeong-Gyun Jang; Ueejong Jeong; Andres Jordan; Kang-Min Kim; Jihun Kim; Chih-Hao Li; Mercedes Lopez-Morales; Kenneth McCracken; Brian A. McLeod; Mark Mueller; Ja-Kyung Nah; Timothy Norton; Heeyoung Oh; Jae Sok Oh

The GMT-Consortium Large Earth Finder (G-CLEF) is an optical-band echelle spectrograph that has been selected as the first light instrument for the Giant Magellan Telescope (GMT). G-CLEF is a general-purpose, high dispersion spectrograph that is fiber fed and capable of extremely precise radial velocity measurements. The G-CLEF Concept Design (CoD) was selected in Spring 2013. Since then, G-CLEF has undergone science requirements and instrument requirements reviews and will be the subject of a preliminary design review (PDR) in March 2015. Since CoD review (CoDR), the overall G-CLEF design has evolved significantly as we have optimized the constituent designs of the major subsystems, i.e. the fiber system, the telescope interface, the calibration system and the spectrograph itself. These modifications have been made to enhance G-CLEF’s capability to address frontier science problems, as well as to respond to the evolution of the GMT itself and developments in the technical landscape. G-CLEF has been designed by applying rigorous systems engineering methodology to flow Level 1 Scientific Objectives to Level 2 Observational Requirements and thence to Level 3 and Level 4. The rigorous systems approach applied to G-CLEF establishes a well defined science requirements framework for the engineering design. By adopting this formalism, we may flexibly update and analyze the capability of G-CLEF to respond to new scientific discoveries as we move toward first light. G-CLEF will exploit numerous technological advances and features of the GMT itself to deliver an efficient, high performance instrument, e.g. exploiting the adaptive optics secondary system to increase both throughput and radial velocity measurement precision.


Proceedings of SPIE | 2014

The Giant Magellan Telescope active optics system

Brian A. McLeod; Antonin H. Bouchez; Brady Espeland; José M. Filgueira; Matt Johns; Timothy Norton; Mark Ordway; William A. Podgorski; John B. Roll; Carey Smith

The Giant Magellan Telescope active optics system is required to maintain image quality across a 20 arcminute diameter field of view. To do so, it must control the positions of the primary mirror and secondary mirror segments, and the figures of the primary mirror segments. When operating with its adaptive secondary mirror, the figure of the secondary is also controlled. Wavefront and fast-guiding measurements are made using a set of four probes deployed around the field of view. Through a set of simulations we have determined a set of modes that will be used to control fielddependent aberrations without degeneracies.


Proceedings of SPIE | 2012

The F/5 instrumentation suite for the Clay Telescope

Andrew Szentgyorgyi; Brian A. McLeod; Daniel G. Fabricant; Robert G. Fata; Timothy Norton; Mark Ordway; John B. Roll; Henry Bergner; Maureen A. Conroy; D. Curley; Harland W. Epps; T. Gauron; John C. Geary; Mark Mueller; Alan Uomoto; Stephen M. Amato; J. Barberis; Roger Eng; Gabor Furesz; Edward Hertz; C. Hull; Kenneth McCracken; George U. Nystrom; David J. Osip; P. Palunas; F. Perez; F. Sanchez; V. Suc; David R. Weaver; Deborah F. Woods

The f/5 instrumentation suite for the Clay telescope was developed to provide the Magellan Consortium observer community with wide field optical imaging and multislit NIR spectroscopy capability. The instrument suite consists of several major subsystems including two focal plane instruments. These instruments are Megacam and MMIRS. Megacam is a panoramic, square format CCD mosaic imager, 0.4° on a side. It is instrumented with a full set of Sloan filters. MMIRS is a multislit NIR spectrograph that operates in Y through K band and has long slit and imaging capability as well. These two instruments can operate both at Magellan and the MMT. Megacam requires a wide field refractive corrector and a Topbox to support shutter and filter selection functions, as well as to perform wavefront sensing for primary mirror figure correction. Both the corrector and Topbox designs were modeled on previous designs for MMT, however features of the Magellan telescope required considerable revision of these designs. In this paper we discuss the optomechanical, electrical, software and structural design of these subsystems, as well as operational considerations that attended delivery of the instrument suite to first light.


Ground-based and Airborne Telescopes VII | 2018

Control and monitoring system for the Greenland telescope: computers, network and software

Hiroaki Nishioka; Chih-Wei L. Huang; Patel A. Patel; Derek Kubo; Pierre Martin-Cocher; Chih-Chiang J. Han; Chen-Yu Yu; Homin Jiang; Ranjani Srinivasan; Satoki Matsushita; Keiichi Asada; Geoffrey C. Bower; Shu-Hao Chang; Ming-Tang Chen; Paul T. P. Ho; Yau-De Huang; Makoto Inoue; Shoko Koyama; Lupin C. C. Lin; Ching-Tang Liu; Timothy Norton; George Nystrom; Tashun Wei; Ryan M. Berthold; Per Friberg; Timothy C. Chuter; Kuan-Yu Liu; Craig Walther; Jun-Yi Koay; Wen-Ping Lo

We describe the control and monitoring system for the Greenland Telescope (GLT). The GLT is a 12-m radio telescope aiming to carry out the sub-millimeter Very Long Baseline Interferometry (VLBI) observations and image the shadow of the super massive black hole in M87. In November 2017 construction has been finished and commissioning activity has been started. In April 2018 we participated in the VLBI observing campaign for the Event Horizon Telescope (EHT) collaboration. In this paper we present the entire GLT control/monitoring system in terms of computers, network and software.


Proceedings of SPIE | 2016

The prototype cameras for trans-Neptunian automatic occultation survey

Shiang-Yu Wang; Hung-Hsu Ling; Yen-Sang Hu; John C. Geary; Yin-Chang Chang; Hsin-Yo Chen; Stephen M. Amato; Pin-Jie Huang; Jérôme Pratlong; Andrew Szentgyorgyi; M. J. Lehner; Timothy Norton; Paul Jorden

The Transneptunian Automated Occultation Survey (TAOS II) is a three robotic telescope project to detect the stellar occultation events generated by TransNeptunian Objects (TNOs). TAOS II project aims to monitor about 10000 stars simultaneously at 20Hz to enable statistically significant event rate. The TAOS II camera is designed to cover the 1.7 degrees diameter field of view of the 1.3m telescope with 10 mosaic 4.5k×2k CMOS sensors. The new CMOS sensor (CIS 113) has a back illumination thinned structure and high sensitivity to provide similar performance to that of the back-illumination thinned CCDs. Due to the requirements of high performance and high speed, the development of the new CMOS sensor is still in progress. Before the science arrays are delivered, a prototype camera is developed to help on the commissioning of the robotic telescope system. The prototype camera uses the small format e2v CIS 107 device but with the same dewar and also the similar control electronics as the TAOS II science camera. The sensors, mounted on a single Invar plate, are cooled to the operation temperature of about 200K as the science array by a cryogenic cooler. The Invar plate is connected to the dewar body through a supporting ring with three G10 bipods. The control electronics consists of analog part and a Xilinx FPGA based digital circuit. One FPGA is needed to control and process the signal from a CMOS sensor for 20Hz region of interests (ROI) readout.


Proceedings of SPIE | 2016

On-sky demonstration of the GMT dispersed fringe phasing sensor prototype on the Magellan Telescope

Derek Kopon; Brian A. McLeod; Marcos A. van Dam; Antonin H. Bouchez; Ken McCracken; Daniel Catropa; William A. Podgorski; Stuart McMuldroch; Alan D. Conder; Laird M. Close; Jared R. Males; Katie M. Morzinski; Timothy Norton

The GMT is an aplanatic Gregorian telescope consisting of 7 primary and secondary mirror segments that must be phased to within a fraction of an imaging wavelength to allow the 25.4 meter telescope to reach its diffraction limit. When operating in Laser Tomographic Adaptive Optics (LTAO) mode, on-axis guide stars will not be available for segment phasing. In this mode, the GMT’s Acquisition, Guiding, and Wavefront Sensing system (AGWS) will deploy four pickoff probes to acquire natural guide stars in a 6-10 arcmin annular FOV for guiding, active optics, and segment phasing. The phasing sensor will be able to measure piston phase differences between the seven primary/secondary pairs of up to 50 microns with an accuracy of 50 nm using a J-band dispersed fringe sensor. To test the dispersed fringe sensor design and validate the performance models, SAO has built and commissioned a prototype phasing sensor on the Magellan Clay 6.5 meter telescope. This prototype uses an aperture mask to overlay 6 GMT-sized segment gap patterns on the Magellan 6.5 meter primary mirror reimaged pupil. The six diffraction patterns created by these subaperture pairs are then imaged with a lenslet array and dispersed with a grism. An on-board phase shifter has the ability to simulate an arbitrary phase shift within subaperture pairs. The prototype operates both on-axis and 6 arcmin off-axis either with AO correction from the Magellan adaptive secondary MagAO system on or off in order to replicate as closely as possible the conditions expected at the GMT.

Collaboration


Dive into the Timothy Norton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey D. Crane

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge