Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Carter is active.

Publication


Featured researches published by Timothy R. Carter.


Nature | 2010

The next generation of scenarios for climate change research and assessment

Richard H. Moss; Jae Edmonds; Kathy Hibbard; Martin R. Manning; Steven K. Rose; Detlef P. van Vuuren; Timothy R. Carter; Seita Emori; Mikiko Kainuma; T. Kram; Gerald A. Meehl; John Mitchell; N. Nakicenovic; Keywan Riahi; Steven J. Smith; Ronald J. Stouffer; Allison M. Thomson; John P. Weyant; Thomas J. Wilbanks

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth’s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.


Science | 2005

Ecosystem service supply and vulnerability to global change in Europe

Dagmar Schröter; Wolfgang Cramer; Rik Leemans; I. Colin Prentice; Miguel B. Araújo; Nigel W. Arnell; Alberte Bondeau; Harald Bugmann; Timothy R. Carter; Carlos Gracia; Anne C. de la Vega-Leinert; Markus Erhard; Frank Ewert; Margaret J. Glendining; Joanna Isobel House; Susanna Kankaanpää; Richard J.T. Klein; Sandra Lavorel; Marcus Lindner; Marc J. Metzger; Jeannette Meyer; Timothy D. Mitchell; Isabelle Reginster; Mark Rounsevell; Santi Sabaté; Stephen Sitch; Ben Smith; Jo Smith; Pete Smith; Martin T. Sykes

Global change will alter the supply of ecosystem services that are vital for human well-being. To investigate ecosystem service supply during the 21st century, we used a range of ecosystem models and scenarios of climate and land-use change to conduct a Europe-wide assessment. Large changes in climate and land use typically resulted in large changes in ecosystem service supply. Some of these trends may be positive (for example, increases in forest area and productivity) or offer opportunities (for example, “surplus land” for agricultural extensification and bioenergy production). However, many changes increase vulnerability as a result of a decreasing supply of ecosystem services (for example, declining soil fertility, declining water availability, increasing risk of forest fires), especially in the Mediterranean and mountain regions.


Climatic Change | 2014

A new scenario framework for climate change research: the concept of shared socioeconomic pathways

Brian C. O’Neill; Elmar Kriegler; Keywan Riahi; Kristie L. Ebi; Stephane Hallegatte; Timothy R. Carter; Ritu Mathur; Detlef P. van Vuuren

The new scenario framework for climate change research envisions combining pathways of future radiative forcing and their associated climate changes with alternative pathways of socioeconomic development in order to carry out research on climate change impacts, adaptation, and mitigation. Here we propose a conceptual framework for how to define and develop a set of Shared Socioeconomic Pathways (SSPs) for use within the scenario framework. We define SSPs as reference pathways describing plausible alternative trends in the evolution of society and ecosystems over a century timescale, in the absence of climate change or climate policies. We introduce the concept of a space of challenges to adaptation and to mitigation that should be spanned by the SSPs, and discuss how particular trends in social, economic, and environmental development could be combined to produce such outcomes. A comparison to the narratives from the scenarios developed in the Special Report on Emissions Scenarios (SRES) illustrates how a starting point for developing SSPs can be defined. We suggest initial development of a set of basic SSPs that could then be extended to meet more specific purposes, and envision a process of application of basic and extended SSPs that would be iterative and potentially lead to modification of the original SSPs themselves.


Eos, Transactions American Geophysical Union | 2002

PRUDENCE employs new methods to assess European climate change

Jesper Christensen; Timothy R. Carter; Filippo Giorgi

Both decision-makers and the general public need detailed information on future climate to evaluate the risks associated with possible climate change due to anthropogenic emissions of greenhouse gases. Projections of future climate change already exist, but they are deficient, in terms of both the characterization of their uncertainties and their regional detail. To date, the assessment of potential impacts of climate change has generally relied on projections from simple climate models or coarse resolution coupled Atmosphere-Ocean General Circulation Models (AOGCMs). The former include, at best, only a limited physical representation of the climate system. The latter are unable to resolve processes occurring at scales of less than ∼300 km. This resolution limitation precludes the simulation of realistic extreme events and the detailed spatial structure of variables like temperature and precipitation over regions characterized by heterogeneous surfaces. Typical examples of such regions are mountainous areas such as the Alps or Scandinavia or coastal zones, and areas surrounding inland seas, such as the Mediterranean and Baltic.


Climatic Change | 2014

A new scenario framework for Climate Change Research: scenario matrix architecture

Detlef P. van Vuuren; Elmar Kriegler; Brian C. O’Neill; Kristie L. Ebi; Keywan Riahi; Timothy R. Carter; Jae Edmonds; Stephane Hallegatte; Tom Kram; Ritu Mathur; Harald Winkler

This paper describes the scenario matrix architecture that underlies a framework for developing new scenarios for climate change research. The matrix architecture facilitates addressing key questions related to current climate research and policy-making: identifying the effectiveness of different adaptation and mitigation strategies (in terms of their costs, risks and other consequences) and the possible trade-offs and synergies. The two main axes of the matrix are: 1) the level of radiative forcing of the climate system (as characterised by the representative concentration pathways) and 2) a set of alternative plausible trajectories of future global development (described as shared socio-economic pathways). The matrix can be used to guide scenario development at different scales. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic pathways and shared policy assumptions (devices for incorporating explicit mitigation and adaptation policies), are elaborated in other papers in this special issue.


Climatic Change | 2014

A new scenario framework for climate change research: background, process, and future directions

Kristie L. Ebi; Stephane Hallegatte; Tom Kram; Nigel W. Arnell; Timothy R. Carter; Jae Edmonds; Elmar Kriegler; Ritu Mathur; Brian C. O’Neill; Keywan Riahi; Harald Winkler; Detlef P. van Vuuren; Timm Zwickel

The scientific community is developing new global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes that could pose risks to human and natural systems; how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce risks; the costs and benefits of various policy mixes; and the relationship of future climate change adaptation and mitigation policy responses with sustainable development. This paper provides the background to and process of developing the conceptual framework for these scenarios, as described in the three subsequent papers in this Special Issue (Van Vuuren et al., 2013; O’Neill et al., 2013; Kriegler et al., Submitted for publication in this special issue). The paper also discusses research needs to further develop, apply, and revise this framework in an iterative and open-ended process. A key goal of the framework design and its future development is to facilitate the collaboration of climate change researchers from a broad range of perspectives and disciplines to develop policy- and decision-relevant scenarios and explore the challenges and opportunities human and natural systems could face with additional climate change.


Climatic Change | 2014

Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old

Detlef P. van Vuuren; Timothy R. Carter

A suggestion for mapping the SRES illustrative scenarios onto the new scenarios framework of representative concentration pathways (RCPs) and shared socio-economic pathways (SSPs) is presented. The mapping first compares storylines describing future socio-economic developments for SRES and SSPs. Next, it compares projected atmospheric composition, radiative forcing and climate characteristics for SRES and RCPs. Finally, it uses the new scenarios matrix architecture to match SRES scenarios to combinations of RCPs and SSPs, resulting in four suggestions of suitable combinations, mapping: (i) an A2 world onto RCP 8.5 and SSP3, (ii) a B2 (or A1B) world onto RCP 6.0 and SSP2, (iii) a B1 world onto RCP 4.5 and SSP1, and (iv) an A1FI world onto RCP 8.5 and SSP5. A few other variants are also explored. These mappings, though approximate, may assist analysts in reconciling earlier scenarios with the new scenario framework.


Environmental Conservation | 2004

Loss of palsa mires in Europe and biological consequences

Miska Luoto; Risto K. Heikkinen; Timothy R. Carter

Palsa mires are northern mire complexes with permanently frozen peat hummocks. These are degrading throughout their distribution range, probably because of regional climatic warming. This review of the current understanding of the geographical, climatic and biological characteristics of palsa mires focuses on Europe. Recent studies have reported a drastic decrease in the extent of palsa mires in Fennoscandia; in Finland, the distribution of palsas was formerly about three times that at present. With continued or accelerated warming, as predicted for high latitudes, further extensive degradation or the wholesale disappearance of palsa mires seems inevitable. Palsa mires are known to be biologically heterogeneous environments with a rich diversity of bird species, and they are listed as a priority habitat type by the European Union. However, their role as habitats for other organisms is still poorly understood. There is urgent need for research and monitoring to assess the ecological and biological consequences of the decline of palsa mires in Europe.


Ecology and Evolution | 2013

Modelling shifts in agroclimate and crop cultivar response under climate change.

Reimund P. Rötter; J. G. Höhn; Mirek Trnka; Stefan Fronzek; Timothy R. Carter; Helena Kahiluoto

This paper aims: (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.


Regional Environmental Change | 2016

Characterising vulnerability of the elderly to climate change in the Nordic region

Timothy R. Carter; Stefan Fronzek; Aino Inkinen; Ismo Lahtinen; Matti Lahtinen; Hanna Mela; Karen O’Brien; Lynn D. Rosentrater; Reija Ruuhela; Louise Simonsson; Emma Terama

Elderly people are known to be more vulnerable than the general population to a range of weather-related hazards such as heat waves, icy conditions and cold periods. In the Nordic region, some of these hazards are projected to change their frequency and intensity in the future, while at the same time strong increases are projected in the proportion of elderly in the population. This paper reports results from three projects studying the potential impacts of climate change on elderly people in the Nordic region. An interactive web-based tool has been developed for mapping and combining indicators of climate change vulnerability of the elderly, by municipality, across three Nordic countries: Finland, Norway and Sweden. The tool can also be used for projecting temperature-related mortality in Finland under different projections of future climate. The approach to vulnerability mapping differs from most previous studies in which researchers selected the indicators to combine into an index. Here, while researchers compile data on indicators that can be accessed in the mapping tool, the onus is on the users of the tool to decide which indicators are of interest and whether to map them individually or as combined indices. Stakeholders with responsibility for the care and welfare of the elderly were engaged in the study through interviews and a workshop. They affirmed the usefulness of the prototype mapping tool for raising awareness about climate change as a potential risk factor for the elderly and offered suggestions on potential refinements, which have now been implemented. These included adding background information on possible adaptation measures for ameliorating the impacts of extreme temperatures, and improved representation of uncertainties in projections of future exposure and adaptive capacity.

Collaboration


Dive into the Timothy R. Carter's collaboration.

Top Co-Authors

Avatar

Stefan Fronzek

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Nina Pirttioja

Finnish Environment Institute

View shared research outputs
Top Co-Authors

Avatar

Taru Palosuo

European Forest Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Bindi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel Buis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

M. Ruiz-Ramos

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keywan Riahi

International Institute for Applied Systems Analysis

View shared research outputs
Researchain Logo
Decentralizing Knowledge