Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Dean is active.

Publication


Featured researches published by Timothy R. Dean.


Applied and Environmental Microbiology | 2008

Bacteriophages Reduce Experimental Contamination of Hard Surfaces, Tomato, Spinach, Broccoli, and Ground Beef by Escherichia coli O157:H7

Tamar Abuladze; Manrong Li; Marc Y. Menetrez; Timothy R. Dean; Andre Senecal; Alexander Sulakvelidze

ABSTRACT A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (1010, 109, and 108 PFU/ml) resulted in statistically significant reductions (P = <0.05) of 99.99%, 98%, and 94%, respectively, in the number of E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 109 PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 ± 4 h posttreatment of tomato samples) to 100% (at 24 ± 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.


Bacteriophage | 2011

Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and NanoSight-based assays

Bradley Anderson; Mohammed H. Rashid; Chandi Carter; Gary R. Pasternack; Chythanya Rajanna; Tamara Revazishvili; Timothy R. Dean; Andre Senecal; Alexander Sulakvelidze

Bacteriophages are increasingly being utilized and considered for various practical applications, ranging from decontaminating foods and inanimate surfaces to human therapy; therefore, it is important to determine their concentrations quickly and reliably. Traditional plaque assay (PA) is the current “gold standard” for quantitating phage titers. However, it requires at least 18 h before results are obtained, and they may be significantly influenced by various factors. Therefore, two alternative assays based on the quantitative real-time polymerase chain reaction (QPCR) and NanoSight Limited (NS) technologies were recently proposed for enumerating phage particles. The present study compared the three approaches’ abilities to quantitate Listeria monocytogenes-, Escherichia coli O157:H7-, and Yersinia pestis-specific lytic phages quickly and reproducibly. The average coefficient of variation (CVS) of the PA method including all three phages was 0.15. The reproducibility of the PA method decreased dramatically when multiple investigators performed the assays, and mean differences of as much as 0.33 log were observed. The QPCR method required costly equipment and the synthesis of phage-specific oligonucleotide primers, but it determined phage concentrations faster (within about 4 h) and more precisely than did PA (CVS = 0.13). NS technology required costly equipment, was less precise (CVS = 0.28) than the PA and QPCR methods, and only worked when the phages were suspended in clear medium. However, it provided results within 5 min. After the overall correlation is established with the PA method, either of the two assays may be useful for quickly and reproducibly determining phage concentrations.


Journal of biomolecular techniques | 2013

Determining Fungi rRNA Copy Number by PCR

Jonathan Black; Timothy R. Dean; Grace Byfield; Karin Foarde; Marc Y. Menetrez

The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within a standard qPCR reaction. The first control developed was the internal standard control gene, benA. This gene encodes for β-tubulin and was selected based on its single-copy nature. The second control developed was the standard control plasmid, which contained a fragment of the ribosomal RNA (rRNA) gene and produced a specific PCR product. The results confirm the multicopy nature of the rRNA region in several filamentous fungi and show that we can quantify fungi of unknown genome size over a range of spore extractions by inclusion of these two standard controls. Advances in qPCR have led to extremely sensitive and quantitative methods for single-copy genes; however, it has not been well established that the rRNA can be used to quantitate fungal contamination. We report on the use of qPCR, combined with two controls, to identify and quantify indoor fungal contaminants with a greater degree of confidence than has been achieved previously. Advances in indoor environmental health have demonstrated that contamination of the built environment by the filamentous fungi has adverse impacts on the health of building occupants. This study meets the need for more accurate and reliable methods for fungal identification and quantitation in the indoor environment.


Bacteriophage | 2012

A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium

Mohammed H. Rashid; Tamara Revazishvili; Timothy R. Dean; Amy Butani; Kathleen Verratti; Kimberly A. Bishop-Lilly; Shanmuga Sozhamannan; Alexander Sulakvelidze; Chythanya Rajanna

Five Y. pestis bacteriophages obtained from various sources were characterized to determine their biological properties, including their taxonomic classification, host range and genomic diversity. Four of the phages (YpP-G, Y, R and YpsP-G) belong to the Podoviridae family, and the fifth phage (YpsP-PST) belongs to the Myoviridae family, of the order Caudovirales comprising of double-stranded DNA phages. The genomes of the four Podoviridae phages were fully sequenced and found to be almost identical to each other and to those of two previously characterized Y. pestis phages Yepe2 and φA1122. However, despite their genomic homogeneity, they varied in their ability to lyse Y. pestis and Y. pseudotuberculosis strains. The five phages were combined to yield a “phage cocktail” (tentatively designated “YPP-100”) capable of lysing the 59 Y. pestis strains in our collection. YPP-100 was examined for its ability to decontaminate three different hard surfaces (glass, gypsum board and stainless steel) experimentally contaminated with a mixture of three genetically diverse Y. pestis strains CO92, KIM and 1670G. Five minutes of exposure to YPP-100 preparations containing phage concentrations of ca. 109, 108 and 107 PFU/mL completely eliminated all viable Y. pestis cells from all three surfaces, but a few viable cells were recovered from the stainless steel coupons treated with YPP-100 diluted to contain ca. 106 PFU/mL. However, even that highly diluted preparation significantly (p = < 0.05) reduced Y. pestis levels by ≥ 99.97%. Our data support the idea that Y. pestis phages may be useful for decontaminating various hard surfaces naturally- or intentionally-contaminated with Y. pestis.


Molecular Biotechnology | 2005

A simple polymerase chain reaction/restriction fragment length polymorphism assay capable of identifying medically relevant filamentous fungi.

Timothy R. Dean; Michael J. Kohan; Doris Betancourt; Marc Y. Menetrez

Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment. The genera analyzed were Stachybotrys, Penicillium, Aspergillus, and Cladosporium. Each organism underwent PCR with universal primers that amplified ribosomal sequences generating products from 550 to 600 bp followed by enzymatic digestion with EcoRI, HaeIII, MspI, and HinfI. Our results show that using this combination of restriction enzymes enables the identification of these fungal organisms at the species level.


Mycopathologia | 2006

A simple polymerase chain reaction-sequencing analysis capable of identifying multiple medically relevant filamentous fungal species

Timothy R. Dean; Michael J. Kohan; Doris Betancourt; My Menetrez

Due to the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces it is necessary to accurately determine the organisms responsible for these maladies and to identify them in an accurate and timely manner. Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. To this end, we have devised a simple PAN-PCR approach which when coupled to cloning and sequencing of the clones allows for the unambiguous identification of multiple fungal organisms. Universal primers are used to amplify ribosomal DNA sequences which are then cloned and transformed into Escherichia coli. Individual clones are then sequenced and individual sequences analyzed and organisms identified. Using this method we were capable of identifying Stachybotrys chartarum, Penicillium purpurogenum, Aspergillus sydowii, and Cladosporium cladosporioides from a mixed culture. This method was found to be rapid, highly specific, easy to perform, and cost effective.


Fungal Biology | 2008

Detection of Stachybotrys chartarum using rRNA, tri5, and β-tubulin primers and determining their relative copy number by real-time PCR

Jonathan Black; Timothy R. Dean; Karin Foarde; My Menetrez

Highly conserved regions are attractive targets for detection and quantitation by PCR, but designing species-specific primer sets can be difficult. Ultimately, almost all primer sets are designed based upon literature searches in public domain databases, such as the National Center for Biotechnology Information (NCBI). Prudence suggests that the researcher needs to evaluate as many sequences as available for designing species-specific PCR primers. In this report, we aligned 11, 9, and 16 DNA sequences entered for Stachybotrys spp. rRNA, tri5, and beta-tubulin regions, respectively. Although we were able to align and determine consensus primer sets for the 9 tri5 and the 16 beta-tubulin sequences, there was no consensus sequence that could be derived from alignment of the 11 rRNA sequences. However, by judicious clustering of the sequences that aligned well, we were able to design three sets of primers for the rRNA region of S. chartarum. The two primer sets for tri5 and beta-tubulin produced satisfactory PCR results for all four strains of S. chartarum used in this study whereas only one rRNA primer set of three produced similar satisfactory results. Ultimately, we were able to show that rRNA copy number is approximately 2-log greater than for tri5 and beta-tubulin in the four strains of S. chartarum tested.


Genome Announcements | 2015

Genome Sequence of Stachybotrys chartarum Strain 51-11

Doris Betancourt; Timothy R. Dean; Jean Kim; Josh Levy

ABSTRACT The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.


Ozone-science & Engineering | 2009

An Evaluation of the Antimicrobial Effects of Gas-Phase Ozone

My Menetrez; Karin Foarde; T.D. Schwartz; Timothy R. Dean; Doris Betancourt

This project evaluated the effects of exposing a variety of microorganisms on porous and non-porous materials to elevated gaseous ozone concentrations ranging from 100 – 1000 ppm. Gypsum wallboard (porous) and glass slide (non-porous) building materials were used. Two fungi organisms, two bacteria organisms and two levels of relative humidity (RH) were tested. Increased humidity and non-porous surface exposure were found to increase the biocidal capability of high levels of ozone. The results of this study indicate that even at relatively high concentrations of ozone, it is difficult to get significant reductions of microorganisms on surfaces, especially on porous materials.


The Open Mycology Journal | 2008

Analysis of Fungal Spore Mycotoxin and the Relationship Between Spore Surface Area and Mycotoxin Content Utilizing a Protein Translation Inhibition Assay

Timothy R. Dean; Jonathan Black; Karin Foarde; Marc Y. Menetrez

Due to mounting evidence suggesting that biological contamination in the built environment may cause a myr- iad of adverse health effects, research aimed at understanding the potential exposure to fungal organisms and their me- tabolites is of utmost importance. To this end we utilized a protein translation inhibition assay to determine the relative amounts of mycotoxin present in various fungal spore preparations. Basing our results on the transformation of firefly lu- ciferase in a rabbit reticulocyte system our initial data showed that spores from different fungal genera contained varying amounts of mycotoxins. However, by calculating the surface area of the spores and then normalizing the assay by keeping surface areas equivalent we determined that there is a direct relationship between spore size and mycotoxin content. This is an important finding because simply knowing the numbers of spores is clearly not sufficient; one needs to know the specific species present to formulate an effective risk assessment and remediation regimen. This work illuminates the po- tential inhalation exposure to trichothecene mycotoxins that are suspended in the air of the indoor environment. Currently many methods of fungal analysis in the indoor environment are simply based on spore counts. Our analysis clearly dem- onstrates that it is equally important to know the species of organisms present to accurately determine potential exposure to mycotoxins, thereby enabling effective risk management decisions to be made.

Collaboration


Dive into the Timothy R. Dean's collaboration.

Top Co-Authors

Avatar

Doris Betancourt

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

My Menetrez

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Kohan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge