Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Fennell is active.

Publication


Featured researches published by Timothy R. Fennell.


Critical Reviews in Toxicology | 1994

Review of the metabolic fate of styrene.

Susan Sumner; Timothy R. Fennell

Styrene and styrene oxide have been implicated as reproductive toxicants, neurotoxicants, or carcinogens in vivo or in vitro. The use of these chemicals in the manufacture of plastics and polymers and in the boat-building industry has raised concerns related to the risk associated with human exposure. This review describes the literature to date on the metabolic fate of styrene and styrene oxide in laboratory animals and in humans. Many studies have been conducted to assess the metabolic fate of styrene in rats, and investigations on the metabolism of styrene in humans have been of considerable interest. Limited research has been done to assess metabolism in the mouse. The metabolism of styrene to styrene oxide and further conversion to styrene glycol (via epoxide hydrolase), mandelic acid, and phenylglyoxylic acid has been given considerable attention, and is considered to be the major pathway of activation and detoxication for humans. While the hydrolysis of styrene oxide to styrene glycol historically has been the favored pathway for the rat, studies in more recent years have indicated that glutathione conjugation also is a viable and significant pathway for both the rat and the mouse. This pathway has not been established in humans. Mandelic acid and phenylglyoxylic acid have been used as urinary markers of exposure in humans exposed to styrene. Extensive investigations have been conducted on the kinetics of styrene and styrene oxide in rodents. In people, the kinetics of styrene and styrene oxide in the blood of occupationally exposed workers and volunteers have been determined. Pharmacokinetic models developed in the last decade have become increasingly complex, with the most recent physiologically based model describing the kinetics of styrene and styrene oxide. This model shows pronounced species differences in sensitivity coefficients for styrene or styrene oxide between mice, rats, and humans, where mice are the more sensitive species to the Vmax for both epoxide hydrolase and monooxygenase. This result is particularly interesting in light of the recent findings of extensive mortality and hepatotoxicity for mice exposed to relatively low levels of styrene (250 to 500 ppm), while rats and humans exhibit only nasal and eye irritations at exposure concentrations well above 500 ppm.


Critical Reviews in Toxicology | 1992

A Critical Review of the Toxicology of Glutaraldehyde

Robert O. Beauchamp; Mary Beth G. St Clair; Timothy R. Fennell; David O. Clarke; Kevin T. Morgan; Frank W. Karl

Glutaraldehyde, a low molecular weight aldehyde, has been investigated for toxicity in humans and animals. Examination of this dialdehyde was indicated from previous studies with other aldehydes in which carcinogenicity of formaldehyde and toxicity of acetaldehyde and malonaldehyde have been disclosed. Information gaps concerning the actions of glutaraldehyde have been identified in this review and recommendations are suggested for additional short- and long-term studies. In particular, information regarding irritation of the respiratory tract, potential neurotoxicity, and developmental effects would assist in a complete hazard evaluation of glutaraldehyde. Further study related to disposition, metabolism, and reactions of glutaraldehyde may elucidate the mechanism of action.


Toxicology and Industrial Health | 1992

A physiologically based description of ethylene oxide dosimetry in the rat

Kannan Krishnan; Michael L. Gargas; Timothy R. Fennell; Melvin E. Andersen

A physiologically based pharmacokinetic (PB-PK) model providing a quantitative description of ethylene oxide (ETO) dosimetry in the rat was developed by integrating information on physiology, tissue solubility of ETO, and rate constants for ETO metabolism and binding. The PB-PK model consisted of nine compartments; liver, lung, testis, brain, fat, venous blood, arterial blood, richly perfused and poorly perfused tissues. The tissue: air partition coefficients of ETO, determined by vial equilibration, were similar among the various tissues (range 44–83). The rate constants for glutathione (GSH) conjugation, hydrolysis, and hemoglobin (Hb)- and DNA- binding were estimated from published data and by conducting in vivo inhalation exposure studies. The model adequately predicted the concentrations of Hb and DNA adducts, hepatic and extrahepatic GSH, and urinary N-acetyl-S-(2-hydroxyethyl)-cysteine following inhalation exposures of 1.2 to 1,200 ppm and intravenous administration of 1 to 100 mg/kg of ETO in male Fischer-344 and Sprague-Dawley rats. There was no evidence of nonlinearity in the overall elimination of ETO in the dose range examined. However, nonlinearities in the components of this first order elimination process (namely GSH conjugation, hydrolysis, exhalation) were found to occur at high exposure concentrations. Characterization of the individual metabolic pathways that affect the tissue dosimetry of ETO is important for interspecies extrapolation and risk assessment for this chemical.


Mutation Research | 1990

Macromolecular adducts of ethylene oxide: a literature review and a time-course study on the formation of 7-(2-hydroxyethyl) guanine following exposures of rats by inhalation

Vernon E. Walker; Timothy R. Fennell; Joyce A. Boucheron; Norbert Fedtke; Françoise Ciroussel; James A. Swenberg

The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1-10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3-5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life of approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.


Toxicological Sciences | 2009

Investigation of the Low-Dose Response in the In Vivo Induction of Micronuclei and Adducts by Acrylamide

Errol Zeiger; Leslie Recio; Timothy R. Fennell; Joseph K. Haseman; Rodney W. Snyder; Marvin A. Friedman

Acrylamide is an industrial chemical used in polymer manufacture. It is also formed in foods processed at high temperatures. It induces chromosome aberrations and micronuclei (MN) in somatic cells of mice, but not rats, and mutations in transgenic mice. This study evaluated the low-dose MN response in mouse bone marrow and the shape of the dose-response curve. Mice were treated orally with acrylamide for 28 days using logarithmically spaced doses from 0.125 to 24 mg/kg/day, and MN were assessed in peripheral blood reticulocytes (RETs) and erythrocytes by flow cytometry. Liver glycidamide DNA adducts and acrylamide and glycidamide N-terminal valine hemoglobin adducts were also determined. Acrylamide produced a weak MN response, with statistical significance at 6.0 mg/kg/day, or greater, in MN-RETs and at 4.0 mg/kg/day or greater in MN normochromatic erythrocytes (NCEs). The MN responses at the lower doses were indistinguishable from the concurrent and historical controls. The adducts increased at a much different rate than the MN. When the MN-NCE values were compared to administered dose, the response was consistent with a linear model. However, when hemoglobin or DNA adducts were used as the dose metric, the response was significantly nonlinear, and models that assumed a threshold dose of 1 or 2 mg/kg/day provided a better fit than a linear model. The MN-RET dose-response had greater variability than the MN-NCE response and was consistent with linearity and with a threshold at 1 or 2 mg/kg/day, regardless of the dose metric. These data suggest a threshold for acrylamide in the MN test.


Toxicological Sciences | 2010

Exposure to Hexavalent Chromium Resulted in Significantly Higher Tissue Chromium Burden Compared With Trivalent Chromium Following Similar Oral Doses to Male F344/N Rats and Female B6C3F1 Mice

Bradley J. Collins; Matthew D. Stout; Keith E. Levine; Grace E. Kissling; Ronald L. Melnick; Timothy R. Fennell; Kamal M. Abdo; John B. Pritchard; Reshan A. Fernando; Leo T. Burka; Michelle J. Hooth

In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).


Journal of Medicinal Chemistry | 2012

Design and synthesis of cannabinoid receptor 1 antagonists for peripheral selectivity.

Alan Fulp; Katherine Bortoff; Herbert H. Seltzman; Yanan Zhang; James M. Mathews; Rodney W. Snyder; Timothy R. Fennell; Rangan Maitra

Antagonists of cannabinoid receptor 1 (CB1) have potential for the treatment of several diseases such as obesity, liver disease, and diabetes. Recently, development of several CB1 antagonists was halted because of adverse central nervous system (CNS) related side effects observed with rimonabant, the first clinically approved CB1 inverse agonist. However, recent studies indicate that regulation of peripherally expressed CB1 with CNS-sparing compounds is a viable strategy to treat several important disorders. Our efforts aimed at rationally designing peripherally restricted CB1 antagonists have resulted in compounds that have limited blood-brain barrier (BBB) permeability and CNS exposure in preclinical in vitro and in vivo models. Typically, compounds with high topological polar surface areas (TPSAs) do not cross the BBB passively. Compounds with TPSAs higher than that for rimonabant (rimonabant TPSA = 50) and excellent functional activity with limited CNS penetration were identified. These compounds will serve as templates for further optimization.


Journal of Applied Toxicology | 2009

Metabolomics in the assessment of chemical-induced reproductive and developmental outcomes using non-invasive biological fluids: application to the study of butylbenzyl phthalate

Susan Sumner; Rodney W. Snyder; Jason P. Burgess; Christina B. Myers; Rochelle W. Tyl; Carol S. Sloan; Timothy R. Fennell

This study was conducted to evaluate the use of metabolomics for improving our ability to draw correlations between early life exposures and reproductive and/or developmental outcomes. Pregnant CD rats were exposed by gavage daily during gestation to vehicle or to butylbenzyl phthalate (BBP) in vehicle at a level known to induce effects in the offspring and at a level previously not shown to induce effects. Urine was collected for 24 h (on dry ice using all glass metabolism chambers) from dams on gestational day 18 (during exposure) and on post natal day (pnd) 21, and from pnd 25 pups. Traditional phenotypic anchors were measured in pups (between pnd 0 and pnd 26). Metabolomics of urine collected from dams exposed to vehicle or BBP exhibited different patterns for endogenous metabolites. Even three weeks after gestational exposure, metabolic profiles of endogenous compounds in urine could differentiate dams that received the vehicle, low dose or high dose of BBP. Metabolic profiles could differentiate male from female pups, pups born to dams receiving the vehicle, low or high BBP dose, and pups with observable adverse reproductive effects from pups with no observed effects. Metabolites significant to the separation of dose groups and their relationship with effects measured in the study were mapped to biochemical pathways for determining mechanistic relevance. The application of metabolomics to understanding the mechanistic link between low levels of environmental exposure and disease/dysfunction holds huge promise, because this technology is ideal for the analysis of biological fluids in human populations. Copyright


Neuropsychopharmacology | 2013

Effects of Phendimetrazine Treatment on Cocaine vs Food Choice and Extended-Access Cocaine Consumption in Rhesus Monkeys

Matthew L. Banks; Bruce E. Blough; Timothy R. Fennell; Rodney W. Snyder; S. Stevens Negus

There is currently no Food and Drug Administration-approved pharmacotherapy for cocaine addiction. Monoamine releasers such as d-amphetamine constitute one class of candidate medications, but clinical use and acceptance are hindered by their own high-abuse liability. Phendimetrazine (PDM) is a schedule III anorectic agent that functions as both a low-potency monoamine-uptake inhibitor and as a prodrug for the monoamine-releaser phenmetrazine (PM), and it may serve as a clinically available, effective, and safer alternative to d-amphetamine. This study determined efficacy of chronic PDM to reduce cocaine self-administration by rhesus monkeys (N=4) using a novel procedure that featured both daily assessments of cocaine vs food choice (to assess medication efficacy to reallocate behavior away from cocaine choice and toward choice of an alternative reinforcer) and 20 h/day cocaine access (to allow high-cocaine intake). Continuous 21-day treatment with ramping PDM doses (days 1–7: 0.32 mg/kg/h; days 8–21: 1.0 mg/kg/h) reduced cocaine choices, increased food choices, and nearly eliminated extended-access cocaine self-administration without affecting body weight. There was a trend for plasma PDM and PM levels to correlate with efficacy to decrease cocaine choice such that the monkey with the highest plasma PDM and PM levels also demonstrated the greatest reductions in cocaine choice. These results support further consideration of PDM as a candidate anti-cocaine addiction pharmacotherapy. Moreover, PDM may represent a novel pharmacotherapeutic approach for cocaine addiction because it may simultaneously function as both a monoamine-uptake inhibitor (via the parent drug PDM) and as a monoamine releaser (via the active metabolite PM).


Drug and Alcohol Dependence | 2013

Role of phenmetrazine as an active metabolite of phendimetrazine: Evidence from studies of drug discrimination and pharmacokinetics in rhesus monkeys

Matthew L. Banks; Bruce E. Blough; Timothy R. Fennell; Rodney W. Snyder; S. Stevens Negus

BACKGROUND Monoamine releasers such as d-amphetamine that selectively promote release of dopamine/norepinephrine versus serotonin are one class of candidate medications for treating cocaine dependence; however, their clinical utility is limited by undesirable effects such as abuse liability. Clinical utility of these compounds may be increased by development of prodrugs to reduce abuse potential by slowing onset of drug effects. This study examined the behavioral and pharmacokinetic profile of the Schedule III compound phendimetrazine, which may serve as a prodrug for the N-demethylated metabolite and potent dopamine/norepinephrine releaser phenmetrazine. METHODS Monkeys (n = 5) were trained in a two-key food-reinforced discrimination procedure to discriminate cocaine (0.32 mg/kg, IM) from saline, and the potency and time course of cocaine-like discriminative stimulus effects were determined for (+)-phenmetrazine, (-)-phenmetrazine, (+)-phendimetrazine, (-)-phendimetrazine, and (±)-phendimetrazine. Parallel pharmacokinetic studies in the same monkeys examined plasma phenmetrazine and phendimetrazine levels for correlation with cocaine-like discriminative stimulus effects. RESULTS Both isomers of phenmetrazine, and the racemate and both isomers of phendimetrazine, produced dose- and time-dependent substitution for the discriminative stimulus effects of cocaine, with greater potency residing in the (+) isomers. In general, plasma phenmetrazine levels increased to similar levels after administration of behaviorally active doses of either phenmetrazine or phendimetrazine. CONCLUSIONS These results support the hypothesis that phenmetrazine is an active metabolite that contributes to the effects of phendimetrazine. However, behavioral effects of phendimetrazine had a more rapid onset than would have been predicted by phenmetrazine levels alone, suggesting that other mechanisms may also contribute.

Collaboration


Dive into the Timothy R. Fennell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suramya Waidyanatha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge