Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy R. Hercus is active.

Publication


Featured researches published by Timothy R. Hercus.


Blood | 2009

The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease

Timothy R. Hercus; Daniel Thomas; Mark A. Guthridge; Paul G. Ekert; Jack King-Scott; Michael W. Parker; Angel F. Lopez

Already 20 years have passed since the cloning of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, the first member of the GM-CSF/interleukin (IL)-3/IL-5 family of hemopoietic cytokine receptors to be molecularly characterized. The intervening 2 decades have uncovered a plethora of biologic functions transduced by the GM-CSF receptor (pleiotropy) and revealed distinct signaling networks that couple the receptor to biologic outcomes. Unlike other hemopoietin receptors, the GM-CSF receptor has a significant nonredundant role in myeloid hematologic malignancies, macrophage-mediated acute and chronic inflammation, pulmonary homeostasis, and allergic disease. The molecular mechanisms underlying GM-CSF receptor activation have recently been revealed by the crystal structure of the GM-CSF receptor complexed to GM-CSF, which shows an unexpected higher order assembly. Emerging evidence also suggests the existence of intracellular signosomes that are recruited in a concentration-dependent fashion to selectively control cell survival, proliferation, and differentiation by GM-CSF. These findings begin to unravel the mystery of cytokine receptor pleiotropy and are likely to also apply to the related IL-3 and IL-5 receptors as well as other heterodimeric cytokine receptors. The new insights in GM-CSF receptor activation have clinical significance as the structural and signaling nuances can be harnessed for the development of new treatments for malignant and inflammatory diseases.


Cell | 2008

The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

Guido Hansen; Timothy R. Hercus; Barbara J. McClure; Frank C. Stomski; Mara Dottore; Jason A. Powell; Hayley S. Ramshaw; Joanna M. Woodcock; Yibin Xu; Mark A. Guthridge; William J. McKinstry; Angel F. Lopez; Michael W. Parker

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific alpha subunit and a betac subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface and functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.


Immunological Reviews | 2012

The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling.

Sophie E. Broughton; Urmi Dhagat; Timothy R. Hercus; Tracy L. Nero; Michele A. Grimbaldeston; Claudine S. Bonder; Angel F. Lopez; Michael W. Parker

Granulocyte–macrophage colony‐stimulating factor (GM–CSF), interleukin‐3 (IL‐3), and IL‐5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM–CSF receptor ternary complex and the IL‐5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure–function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure‐based approaches for the discovery of novel and disease‐specific therapeutics. In addition, recent biochemical evidence has suggested that the GM–CSF/IL‐3/IL‐5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.


Blood | 2001

Structure of the activation domain of the GM-CSF/IL-3/IL-5 receptor common β-chain bound to an antagonist

Jamie Rossjohn; William J. McKinstry; Joanna M. Woodcock; Barbara J. McClure; Timothy R. Hercus; Michael W. Parker; Angel F. Lopez; Christopher J. Bagley

Heterodimeric cytokine receptors generally consist of a major cytokine-binding subunit and a signaling subunit. The latter can transduce signals by more than 1 cytokine, as exemplified by the granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-2 (IL-2), and IL-6 receptor systems. However, often the signaling subunits in isolation are unable to bind cytokines, a fact that has made it more difficult to obtain structural definition of their ligand-binding sites. This report details the crystal structure of the ligand-binding domain of the GM-CSF/IL-3/IL-5 receptor beta-chain (beta(c)) signaling subunit in complex with the Fab fragment of the antagonistic monoclonal antibody, BION-1. This is the first single antagonist of all 3 known eosinophil-producing cytokines, and it is therefore capable of regulating eosinophil-related diseases such as asthma. The structure reveals a fibronectin type III domain, and the antagonist-binding site involves major contributions from the loop between the B and C strands and overlaps the cytokine-binding site. Furthermore, tyrosine(421) (Tyr(421)), a key residue involved in receptor activation, lies in the neighboring loop between the F and G strands, although it is not immediately adjacent to the cytokine-binding residues in the B-C loop. Interestingly, functional experiments using receptors mutated across these loops demonstrate that they are cooperatively involved in full receptor activation. The experiments, however, reveal subtle differences between the B-C loop and Tyr(421), which is suggestive of distinct functional roles. The elucidation of the structure of the ligand-binding domain of beta(c) also suggests how different cytokines recognize a single receptor subunit, which may have implications for homologous receptor systems. (Blood. 2000;95:2491-2498)


Iubmb Life | 2010

Molecular basis of cytokine receptor activation

Angel F. Lopez; Timothy R. Hercus; Paul G. Ekert; Dene Littler; Mark A. Guthridge; Daniel Thomas; Hayley S. Ramshaw; Frank C. Stomski; Michelle Perugini; Richard J. D'Andrea; Michele A. Grimbaldeston; Michael W. Parker

Cytokines are secreted soluble peptides that precisely regulate multiple cellular functions. Amongst these the GM‐CSF/IL‐3/IL‐5 family of cytokines controls whether hematopoietic cells will survive or apoptose, proliferate, differentiate, migrate, or perform effector functions such as phagocytosis or reactive oxygen species release. Their potent and pleiotropic activities are mediated through binding to high affinity membrane receptors at surprisingly low numbers per cell. Receptor binding triggers a cascade of intracellular signaling events, including reversible phosphorylation of receptor subunits and associated signaling molecules, leading to multiple biological responses, with the prevention of apoptosis or “cell survival” being a key cellular function that underpins all others. Many chronic inflammatory diseases and a number of haematological malignancies are driven by deregulated GM‐CSF, IL‐3, or IL‐5 cytokine receptor signaling, highlighting their importance in disease. A major step in understanding how these cytokine receptors function is to elucidate their three dimensional structure and to relate this to the many signaling pathways emanating from their receptors. We have recently solved the structure of the human GM‐CSF receptor complexed to GM‐CSF which revealed distinct forms of receptor assembly: a hexamer that comprises two molecules each of GM‐CSF, GM‐CSF receptor alpha chain and GM‐CSF receptor beta chain; and an unexpected dodecamer in which two hexameric complexes associate through a novel site 4. This latter form is necessary to bring JAK2 molecules sufficiently close together to enable full receptor activation. In this review we focus on the most recent insights in cytokine receptor signaling, and in receptor assembly. The stage is now set to link distinct forms of cytokine receptor assembled structures to specific forms of cytokine receptor signaling and function. Armed with this knowledge it may be possible to map distinct cytokine receptor signaling pathways from the cell surface to the cell nucleus which may themselves become new therapeutic targets.


Blood | 2010

Alternative modes of GM-CSF receptor activation revealed using activated mutants of the common β-subunit

Michelle Perugini; Anna L. Brown; Diana Salerno; Cvetan Stojkoski; Timothy R. Hercus; Angel F. Lopez; Margaret L. Hibbs; Thomas J. Gonda; Richard J. D'Andrea

Granulocyte/macrophage colony-stimulating factor promotes growth, survival, differentiation, and activation of normal myeloid cells and plays an important role in myeloid leukemias. The GM-CSF receptor (GMR) shares a signaling subunit, beta(c), with interleukin-3 and interleukin-5 receptors and has recently been shown to induce activation of Janus kinase 2 (JAK2) and downstream signaling via formation of a unique dodecameric receptor complex. In this study we use 2 activated beta(c) mutants that display distinct signaling capacity and have differential requirements for the GMR alpha-subunit (GMR-alpha) to dissect the signaling pathways associated with the GM-CSF response. The V449E transmembrane mutant selectively activates JAK2/signal transducer and activator of transcription 5 and extracellular signal-regulated kinase (ERK) pathways, resulting in a high level of sensitivity to JAK and ERK inhibitors, whereas the extracellular mutant (FIDelta) selectively activates the phosphoinositide 3-kinase/Akt and IkappaKbeta/nuclear factorkappaB pathways. We also demonstrate a novel and direct interaction between the SH3 domains of Lyn and Src with a conserved proline-rich motif in GMR-alpha and show a selective requirement for Src family kinases by the FIDelta mutant. We relate the nonoverlapping nature of signaling by the activated mutants to the structure of the unique GMR complex and propose alternative modes of receptor activation acting synergistically in the mature liganded receptor complex.


Growth Factors Journal | 2012

The GM-CSF receptor family: Mechanism of activation and implications for disease

Timothy R. Hercus; Sophie E. Broughton; Paul G. Ekert; Hayley S. Ramshaw; Michelle Perugini; Michele A. Grimbaldeston; Joanna M. Woodcock; Daniel Thomas; Stuart M. Pitson; Timothy P. Hughes; Richard J. D'Andrea; Michael W. Parker; Angel F. Lopez

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pluripotent cytokine produced by many cells in the body, which regulates normal and malignant hemopoiesis as well as innate and adaptive immunity. GM-CSF assembles and activates its heterodimeric receptor complex on the surface of myeloid cells, initiating multiple signaling pathways that control key functions such as cell survival, cell proliferation, and functional activation. Understanding the molecular composition of these pathways, the interaction of the various components as well as the kinetics and dose-dependent mechanics of receptor activation provides valuable insights into the function of GM-CSF as well as the related cytokines, interleukin-3 and interleukin-5. This knowledge provides opportunities for the development of new therapies to block the action of these cytokines in hematological malignancy and chronic inflammation.


Cytokine & Growth Factor Reviews | 2013

Signalling by the βc family of cytokines.

Timothy R. Hercus; Urmi Dhagat; Winnie L. Kan; Sophie E. Broughton; Tracy L. Nero; Michelle Perugini; Jarrod J. Sandow; Richard J. D’Andrea; Paul G. Ekert; Timothy P. Hughes; Michael W. Parker; Angel F. Lopez

The GM-CSF, IL-3 and IL-5 family of cytokines, also known as the βc family due to their receptors sharing the signalling subunit βc, regulates multiple biological processes such as native and adaptive immunity, inflammation, normal and malignant hemopoieis, and autoimmunity. Australian scientists played a major role in the discovery and biological characterisation of the βc cytokines and their recent work is revealing unique features of cytokine receptor assembly and signalling. Furthermore, specific antibodies have been generated to modulate their function. Characterisation of the structural and dynamic requirements for the activation of the βc receptor family and the molecular definition of downstream signalling pathways are providing new insights into cytokine receptor signalling as well as new therapeutic opportunities.


Cytokine | 2015

The βc receptor family - Structural insights and their functional implications.

Sophie E. Broughton; Tracy L. Nero; Urmi Dhagat; Winnie L. Kan; Timothy R. Hercus; Denis Tvorogov; Angel F. Lopez; Michael W. Parker

Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5 are members of a small family of cytokines that share a beta receptor subunit (βc). These cytokines regulate the growth, differentiation, migration and effector function activities of many hematopoietic cells in bone marrow, blood and sites of inflammation. Excessive or aberrant signaling can result in chronic inflammatory conditions and myeloid leukemias. The crystal structures of the GM-CSF ternary complex, the IL-5 binary complex and the very recent IL-3 receptor alpha subunit build upon decades of structure-function studies, giving new insights into cytokine-receptor specificity and signal transduction. Selective modulation of receptor function is now a real possibility and the structures of the βc receptor family are being used to discover novel and disease-specific therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Characterization of pathogenic human monoclonal autoantibodies against GM-CSF

Yanni Wang; Christy A. Thomson; Lenka Allan; Linda Jackson; Melanie Olson; Timothy R. Hercus; Tracy L. Nero; Amanda Turner; Michael W. Parker; Angel Lopez; Thomas K. Waddell; Gary P. Anderson; John A. Hamilton; John W. Schrader

The origin of pathogenic autoantibodies remains unknown. Idiopathic pulmonary alveolar proteinosis is caused by autoantibodies against granulocyte–macrophage colony-stimulating factor (GM-CSF). We generated 19 monoclonal autoantibodies against GM-CSF from six patients with idiopathic pulmonary alveolar proteinosis. The autoantibodies used multiple V genes, excluding preferred V-gene use as an etiology, and targeted at least four nonoverlapping epitopes on GM-CSF, suggesting that GM-CSF is driving the autoantibodies and not a B-cell epitope on a pathogen cross-reacting with GM-CSF. The number of somatic mutations in the autoantibodies suggests that the memory B cells have been helped by T cells and re-entered germinal centers. All autoantibodies neutralized GM-CSF bioactivity, with general correlations to affinity and off-rate. The binding of certain autoantibodies was changed by point mutations in GM-CSF that reduced binding to the GM-CSF receptor. Those monoclonal autoantibodies that potently neutralize GM-CSF may be useful in treating inflammatory disease, such as rheumatoid arthritis and multiple sclerosis, cancer, and pain.

Collaboration


Dive into the Timothy R. Hercus's collaboration.

Top Co-Authors

Avatar

Angel F. Lopez

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie E. Broughton

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Tracy L. Nero

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Urmi Dhagat

St. Vincent's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Barbara J. McClure

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Mara Dottore

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Joanna M. Woodcock

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar

Winnie L. Kan

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge