Timothy Reissman
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Timothy Reissman.
Smart Materials and Structures | 2009
Wen-Jong Wu; Adam M. Wickenheiser; Timothy Reissman; Ephrahim Garcia
This paper presents analytical models for studying the transient behavior of several power harvesting circuit topologies for use with piezoelectric bending transducers. Specifically, the problem of charging a large storage capacitor, which is inherently a time-varying process, is considered. Three circuit designs are studied?direct charging, synchronized switching and discharging to a storage capacitor, and synchronized switching and discharging to a storage capacitor through an inductor (SSDCI)?and they are compared to a matched resistive load case. Analytical models are developed for these cases to predict the charging rates and output power for various values of storage capacitance and quality factor. Experimental circuit designs are given and their results are compared to the theoretical predictions. It is shown that these predictions are accurate when the losses in the circuit are considered in the model. In spite of these losses, it is demonstrated that the SSDCI design can produce about 200% the output power of the idealized, matched resistive load case throughout the charging process and substantially reduce the charging time of the storage capacitor.
IEEE-ASME Transactions on Mechatronics | 2010
Adam M. Wickenheiser; Timothy Reissman; Wen-Jong Wu; Ephrahim Garcia
This paper focuses on comparing the effects of varying degrees of electromechanical coupling in piezoelectric power harvesting systems on the dynamics of charging a storage capacitor. In order to gain an understanding of the behavior of these dynamics, a transducer whose vibrational dynamics are impacted very little by electrical energy extraction is compared to a transducer that displays strong electromechanical coupling. Both transducers are cantilevered piezoelectric beams undergoing base excitation whose harvested electrical energy is used to charge a storage capacitor. The transient dynamics of the coupled system are studied in detail with an emphasis on their charging power curves and the time to charge the storage capacitor to a specified voltage. An analytic model for the system is derived that takes into consideration the reduction in vibration amplitude of the beam caused by the removal of electrical energy. Although this model makes the typical assumption that the beam is vibrating at its open-circuit resonance, it is shown to predict the charging behavior of the system accurately when compared to experimental results and a complete, nonlinear simulation without this simplification. Finally, the simplifications and discrepancies created by several types of modeling assumptions for a highly coupled energy harvesting system are discussed.
Review of Scientific Instruments | 2006
Nicolae Lobontiu; B. Ilic; Ephrahim Garcia; Timothy Reissman; Harold G. Craighead
The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion.
Proceedings of SPIE | 2009
Timothy Reissman; Eric Wolff; Ephrahim Garcia
Piezoelectric cantilever devices for energy harvesting purposes have typically been tuned by manipulating beam dimensions or by placement of a tip mass. While these techniques do lend themselves well to designing a highly tuned resonance, the design is fixed and causes each system to be unique to a specific driving frequency. In this work, we demonstrate the design of a nonlinear tuning technique via a variable external, attractive magnetic force. With this design, the resonance of the piezoelectric energy harvester is able to be tuned with the adjustment of a slider mechanism. The magnetic design uses the well of attraction principle in order to create a varying nonlinear stiffness, which shifts the resonance of the coupled piezoelectric beam. The significance of this work is the design of a piezoelectric energy harvesting system with a variable resonance frequency that can be adjusted for changes in the driving frequencies over a wide range without the replacement of any system components; thus, extending the usefulness of these vibration energy harvesting devices over a larger frequency span.
The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008
Robert MacCurdy; Timothy Reissman; Ephrahim Garcia
Recent efforts in power harvesting systems have concentrated primarily on the optimization of isolated energy conversion techniques, such as piezoelectric, electromagnetic, solar, or thermal generators, but have focused less on combining different energy transducer types and have placed less emphasis on storing the converted energy for use by other devices. The purpose of this work is to analyze and present an integrated piezoelectric and electromagnetic power harvesting system utilizing existing technology for energy management and storage. Primary emphasis is on the analysis of the combination of existing, or readily obtainable, energy conversion techniques, operating as a single system, and the energy conversion efficiency of the alternating to direct current management, or storage, circuit.
The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2008
Timothy Reissman; Joon Sik Park; Ephrahim Garcia
The field of renewable energy has recently taken a surge with the advent of power harvesting systems. Much of the work previously done has focused primarily on dipole materials such as piezoelectric generators due to their high energy density. Exploring other vibration conversion techniques, electromagnetism has been theorized to be highly viable as well. In fact, in the presence of strong magnetic fields, its energy density can exceed that of piezoelectric systems. The key aspects to its usefulness lie in maximizing the rate of change of magnetic flux and thus maximizing the electric potential from the electromotive force. The specifics of this research include the descriptions of the electromagnetic theory, fabrication, and performance of a micro-electromagnetic power harvester with a vibration energy source. In addition, an empirical analysis of the influence of the micro-coils geometry on the performance of the MEMS power harvester is given.
The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring | 2007
Timothy Reissman; Jackie H. Crawford; Ephrahim Garcia
The development of a micro-UAV via a cybernetic organism, primarily the Manduca sexta moth, is presented. An observer to gather output data of the system response of the moth is given by means of an image following system. The visual tracking was implemented to gather the required information about the time history of the moths six degrees of freedom. This was performed with three cameras tracking a white line as a marker on the moths thorax to maximize contrast between the moth and the marker. Evaluation of the implemented six degree of freedom visual tracking system finds precision greater than 0.1 mm within three standard deviations and accuracy on the order of 1 mm. Acoustic and visual response systems are presented to lay the groundwork for creating a stochastic response catalog of the organisms to varied stimuli.
Smart Materials Research | 2012
Evan Baker; Timothy Reissman; Fan Zhou; Chen Wang; Kevin M. Lynch; Cheng Sun
The inefficiency in converting low frequency vibration (6~240 Hz) to electrical energy remains a key issue for miniaturized vibration energy harvesting devices. To address this subject, this paper reports on the novel, three-dimensional micro-fabrication of spring elements within such devices, in order to achieve resonances and maximum energy conversion within these common frequencies. The process, known as projection microstereolithography, is exploited to fabricate polymer-based springs direct from computer-aided designs using digital masks and ultraviolet-curable resins. Using this process, a micro-spring structure is fabricated consisting of a two-by-two array of three-dimensional, constant-pitch helical coils made from 1,6-hexanediol diacrylate. Integrating the spring structure into an electromagnetic device, with a magnetic load mass of 1.236 grams, the resonance is measured at 61 Hz, which is within 2% of the theoretical model. The device provides a maximum normalized power output of 9.14 μW/G ( ms−2) and an open circuit normalized voltage output of 621 mV/G. To the best of the authors knowledge, notable features of this work include the lowest Young’s modulus (530 MPa), density (1.011 g/cm3), and “largest feature size” (3.4 mm) for a spring element in a vibration energy harvesting device with sub-100 Hz resonance.
Proceedings of SPIE | 2011
Timothy Reissman; Robert MacCurdy; Ephrahim Garcia
This article presents an implementation of a miniature energy harvester (weighing 0.292 grams) on an insect (hawkmoth Manduca sexta) in un-tethered flight. The harvester utilizes a piezoelectric transducer which converts the vibratory motion induced by the insects flight into electrical power (generating up to 59 μWRMS). By attaching a low-power management circuit (weighing 0.200 grams) to the energy harvester and accumulating the converted energy onboard the flying insect, we are able to visually demonstrate pulsed power delivery (averaging 196 mW) by intermittently flashing a light emitting diode. This self-recharging system offers biologists a new means for powering onboard electronics used to study small flying animals. Using this approach, the lifetime of the electronics would be limited only by the lifetime of the individuals, a vast improvement over current methods.
Journal of Vibration and Acoustics | 2016
Timothy Reissman; Adam M. Wickenheiser; Ephrahim Garcia
Piezoelectric vibration-based energy harvesting (pVEH) offers much potential as renewable energy structures. Within the literature, often geometry-specific models are developed, making designs of new structures difficult. In this work, a generalized linear algebraic method is developed. The method incorporates the transfer matrix method (TMM) into the well-accepted distributed parameter electromechanical model for a composite-piezoelectric, Euler–Bernoulli beam. The result is an electromechanical TMM which is highly accurate at predicting both structural and energy harvesting performances for a wide variety of designs which have chainlike topologies. A simplification is made within the method to model structures which operate solely within bending modes, reducing the computation to analyses of only four-by-four state transition matrices, regardless of structural complexity. As many applications aim to optimize the large bending mode piezoelectric effect, this simplification does not limit the versatility of the method. To demonstrate the validity of this statement, comparisons were performed to evaluate the accuracy of the method’s predictions for six piezoelectric topologies, including a unimorph without a tip mass, a bimorph with a tip mass, several partial-length bimorphs without a tip mass, and three different multibeam bimorph structures with inline and folded-back designs. The results show differences no greater than 2.24% for the first and second natural frequencies of the structures. Likewise, the method yields excellent predictions for the mode shapes, their slopes, and the voltage frequency responses, especially within the 610% bounds of the natural frequencies. Thus, the future design of new structures is shown to be simplified using this generalizable method. [DOI: 10.1115/1.4033261]