Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy T. Kuo is active.

Publication


Featured researches published by Timothy T. Kuo.


Nature | 2007

The inhibitory cytokine IL-35 contributes to regulatory T-cell function

Lauren W. Collison; Creg J. Workman; Timothy T. Kuo; Kelli L. Boyd; Yao Wang; Kate M. Vignali; Richard Cross; David Sehy; Richard S. Blumberg; Dario A. A. Vignali

Regulatory T (Treg) cells are a critical sub-population of CD4+ T cells that are essential for maintaining self tolerance and preventing autoimmunity, for limiting chronic inflammatory diseases, such as asthma and inflammatory bowel disease, and for regulating homeostatic lymphocyte expansion. However, they also suppress natural immune responses to parasites and viruses as well as anti-tumour immunity induced by therapeutic vaccines. Although the manipulation of Treg function is an important goal of immunotherapy, the molecules that mediate their suppressive activity remain largely unknown. Here we demonstrate that Epstein-Barr-virus-induced gene 3 (Ebi3, which encodes IL-27β) and interleukin-12 alpha (Il12a, which encodes IL-12α/p35) are highly expressed by mouse Foxp3+ (forkhead box P3) Treg cells but not by resting or activated effector CD4+ T (Teff) cells, and that an Ebi3–IL-12α heterodimer is constitutively secreted by Treg but not Teff cells. Both Ebi3 and Il12a messenger RNA are markedly upregulated in Treg cells co-cultured with Teff cells, thereby boosting Ebi3 and IL-12α production in trans. Treg-cell restriction of this cytokine occurs because Ebi3 is a downstream target of Foxp3, a transcription factor that is required for Treg-cell development and function. Ebi3–/– and Il12a–/– Treg cells have significantly reduced regulatory activity in vitro and fail to control homeostatic proliferation and to cure inflammatory bowel disease in vivo. Because these phenotypic characteristics are distinct from those of other IL-12 family members, this novel Ebi3–IL-12α heterodimeric cytokine has been designated interleukin-35 (IL-35). Ectopic expression of IL-35 confers regulatory activity on naive T cells, whereas recombinant IL-35 suppresses T-cell proliferation. Taken together, these data identify IL-35 as a novel inhibitory cytokine that may be specifically produced by Treg cells and is required for maximal suppressive activity.


Journal of Clinical Investigation | 2006

Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria

Masaru Yoshida; Kanna Kobayashi; Timothy T. Kuo; Lynn Bry; Jonathan N. Glickman; Steven M. Claypool; Arthur Kaser; Takashi Nagaishi; Darren E. Higgins; Emiko Mizoguchi; Yoshio Wakatsuki; Derry C. Roopenian; Atsushi Mizoguchi; Wayne I. Lencer; Richard S. Blumberg

The neonatal Fc receptor for IgG (FcRn) plays a major role in regulating host IgG levels and transporting IgG and associated antigens across polarized epithelial barriers. Selective expression of FcRn in the epithelium is shown here to be associated with secretion of IgG into the lumen that allows for defense against an epithelium-associated pathogen (Citrobacter rodentium). This pathway of host resistance to a bacterial pathogen as mediated by FcRn involves retrieval of bacterial antigens from the lumen and initiation of adaptive immune responses in regional lymphoid structures. Epithelial-associated FcRn, through its ability to secrete and absorb IgG, may thus integrate luminal antigen encounters with systemic immune compartments and as such provide essential host defense and immunoregulatory functions at the mucosal surfaces.


Journal of Clinical Immunology | 2010

Neonatal Fc receptor: from immunity to therapeutics.

Timothy T. Kuo; Kristi Baker; Masaru Yoshida; Shuo-Wang Qiao; Victoria G. Aveson; Wayne I. Lencer; Richard S. Blumberg

The neonatal Fc receptor (FcRn), also known as the Brambell receptor and encoded by Fcgrt, is a MHC class I like molecule that functions to protect IgG and albumin from catabolism, mediates transport of IgG across epithelial cells, and is involved in antigen presentation by professional antigen presenting cells. Its function is evident in early life in the transport of IgG from mother to fetus and neonate for passive immunity and later in the development of adaptive immunity and other functions throughout life. The unique ability of this receptor to prolong the half-life of IgG and albumin has guided engineering of novel therapeutics. Here, we aim to summarize the basic understanding of FcRn biology, its functions in various organs, and the therapeutic design of antibody- and albumin-based therapeutics in light of their interactions with FcRn.


Science Translational Medicine | 2013

Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery

Eric M. Pridgen; Frank Alexis; Timothy T. Kuo; Etgar Levy-Nissenbaum; Rohit Karnik; Richard S. Blumberg; Robert Langer; Omid C. Farokhzad

Nanoparticles targeted to the neonatal Fc receptor cross the intestinal epithelium and reach systemic circulation after oral administration. A Spoonful of Nanomedicine Oral delivery of drug-loaded nanoparticles is, to some, the Holy Grail of nanomedicine. Patients can easily pop a pill, which makes them more compliant with a therapeutic regimen. The difficulty with ingesting these tiny particles is that they are not readily absorbed in the intestine, thus eliminating most of the particles from the body and, in turn, limiting efficacy. In response, Pridgen et al. designed polymeric nanoparticles targeting a receptor expressed on the surface of the intestine to actively transport the particle across the cell into the patient’s circulation. The nanoparticles were decorated with Fc fragments that readily bind to the neonatal Fc receptor (FcRn) in the intestinal epithelium. The authors observed that the Fc-targeted nanoparticles crossed the intestinal barrier both in vitro, using human epithelial cells, and in vivo in mice (who also express FcRn), ending up in high concentrations in several organs of the body. By contrast, nontargeted nanoparticles were barely visible. To demonstrate the therapeutic benefits of these Fc-targeted nanoparticles, Pridgen et al. administered insulin-laden targeted and nontargeted particles orally to mice. Free insulin given orally did not generate a glucose response in the animals, similar to the nontargeted, insulin-containing particles. However, Fc-targeted nanoparticles containing insulin produced a significant hypoglycemic response in the mice. To confirm that the targeting and epithelial transport is important for this mode of delivery, the authors showed that animals lacking FcRn did not respond to the insulin-filled Fc-targeted nanoparticles. The ability to deliver nanomedicine orally would open doors to treating many chronic diseases that require daily therapy, such as diabetes and cancer. This study by Pridgen et al. is an exciting proof of concept but will require longer periods of testing in disease models to confirm that FcRn targeting is essential and safe for human use. Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. We show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7%*hour compared with only 1.2%*hour for nontargeted nanoparticles. In addition, targeted nanoparticles containing insulin as a model nanoparticle-based therapy for diabetes were orally administered at a clinically relevant insulin dose of 1.1 U/kg and elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in FcRn knockout mice, indicating that the enhanced nanoparticle transport was specifically due to FcRn. FcRn-targeted nanoparticles may have a major impact on the treatment of many diseases by enabling drugs currently limited by low bioavailability to be efficiently delivered though oral administration.


Nature Medicine | 2004

CD1d function is regulated by microsomal triglyceride transfer protein.

Suzana Brozović; Takashi Nagaishi; Masaru Yoshida; Stephanie Betz; Azucena Salas; Daohong Chen; Arthur Kaser; Jonathan N. Glickman; Timothy T. Kuo; Alicia Little; Jamin Morrison; Nadia Corazza; Jin Yong Kim; Sean P. Colgan; Stephen G. Young; Mark A. Exley; Richard S. Blumberg

CD1d is a major histocompatibility complex (MHC) class I–related molecule that functions in glycolipid antigen presentation to distinct subsets of T cells that express natural killer receptors and an invariant T-cell receptor-α chain (invariant NKT cells). The acquisition of glycolipid antigens by CD1d occurs, in part, in endosomes through the function of resident lipid transfer proteins, namely saposins. Here we show that microsomal triglyceride transfer protein (MTP), a protein that resides in the endoplasmic reticulum of hepatocytes and intestinal epithelial cells (IECs) and is essential for lipidation of apolipoprotein B, associates with CD1d in hepatocytes. Hepatocytes from animals in which Mttp (the gene encoding MTP) has been conditionally deleted, and IECs in which Mttp gene products have been silenced, are unable to activate invariant NKT cells. Conditional deletion of the Mttp gene in hepatocytes is associated with a redistribution of CD1d expression, and Mttp-deleted mice are resistant to immunopathologies associated with invariant NKT cell–mediated hepatitis and colitis. These studies indicate that the CD1d-regulating function of MTP in the endoplasmic reticulum is complementary to that of the saposins in endosomes in vivo.


mAbs | 2011

Neonatal Fc receptor and IgG-based therapeutics

Timothy T. Kuo; Victoria G. Aveson

The majority of potent new biologics today are IgG-based molecules that have demonstrated tissue-targeting specificity with favorable clinical response. Several factors determine the efficacy of these products, including target specificity, serum half-life and effector functions via complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity or drug conjugates. In this review, we will focus on the interaction between therapeutic antibody and neonatal Fc receptor (FcRn), which is one of the critical factors in determining the circulating antibody half-life. Specifically, we will review the fundamental biology of FcRn, FcRn functions in various organs, Fc mutations designed to modulate binding to FcRn, IgG-based therapeutics that directly exploit FcRn functions and tools and strategies used to study FcRn-IgG interactions. Comprehensive understanding of FcRn-IgG interactions not only allows for development of effective therapeutics, but also avoidance of potential adverse effects.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8−CD11b+ dendritic cells

Kristi Baker; Shuo-Wang Qiao; Timothy T. Kuo; Victoria G. Aveson; Barbara Platzer; Jan Terje Andersen; Inger Sandlie; Zhangguo Chen; Colin de Haar; Wayne I. Lencer; Edda Fiebiger; Richard S. Blumberg

Cross-presentation of IgG-containing immune complexes (ICs) is an important means by which dendritic cells (DCs) activate CD8+ T cells, yet it proceeds by an incompletely understood mechanism. We show that monocyte-derived CD8−CD11b+ DCs require the neonatal Fc receptor for IgG (FcRn) to conduct cross-presentation of IgG ICs. Consequently, in the absence of FcRn, Fcγ receptor (FcγR)-mediated antigen uptake fails to initiate cross-presentation. FcRn is shown to regulate the intracellular sorting of IgG ICs to the proper destination for such cross-presentation to occur. We demonstrate that FcRn traps antigen and protects it from degradation within an acidic loading compartment in association with the rapid recruitment of key components of the phagosome-to-cytosol cross-presentation machinery. This unique mechanism thus enables cross-presentation to evolve from an atypically acidic loading compartment. FcRn-driven cross-presentation is further shown to control cross-priming of CD8+ T-cell responses in vivo such that during chronic inflammation, FcRn deficiency results in inadequate induction of CD8+ T cells. These studies thus demonstrate that cross-presentation in CD8−CD11b+ DCs requires a two-step mechanism that involves FcγR-mediated internalization and FcRn-directed intracellular sorting of IgG ICs. Given the centrality of FcRn in controlling cross-presentation, these studies lay the foundation for a unique means to therapeutically manipulate CD8+ T-cell responses.


Seminars in Immunopathology | 2009

Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn

Kristi Baker; Shuo-Wang Qiao; Timothy T. Kuo; Kanna Kobayashi; Masaru Yoshida; Wayne I. Lencer; Richard S. Blumberg

Careful regulation of the body’s immunoglobulin-G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn) which, as a single receptor, is capable of regulating both of these molecules, has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a host of other functions that are equally as critical. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body. This shuttling allows for the movement not only of monomeric ligand but also of antigen/antibody complexes from one cell type to another in such a way as to facilitate the efficient initiation of immune responses towards opsonized pathogens. As such, FcRn continues to play the role of an immunological sensor throughout adult life, particularly in regions such as the gut which are exposed to a large number of infectious antigens. Increasing appreciation for the contributions of FcRn to both homeostatic and pathological states is generating an intense interest in the potential for therapeutic modulation of FcRn binding. A greater understanding of FcRn’s pleiotropic roles is thus imperative for a variety of therapeutic purposes.


Journal of Clinical Immunology | 2013

The Immunologic Functions of the Neonatal Fc Receptor for IgG

Timo Rath; Timothy T. Kuo; Kristi Baker; Shuo-Wang Qiao; Kanna Kobayashi; Masaru Yoshida; Derry C. Roopenian; Edda Fiebiger; Wayne I. Lencer; Richard S. Blumberg

Careful regulation of the body’s immunoglobulin G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn), as a single receptor, is capable of regulating both of these molecules and has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a number of other functions that are equally as critical and are increasingly coming to attention. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body via transcytosis across polarized cells. FcRn is also expressed by hematopoietic cells; consistent with this, FcRn regulates MHC class II presentation and MHC class I cross-presentation by dendritic cells. As such, FcRn plays an important role in immune surveillance throughout adult life. The increasing appreciation for FcRn in both homeostatic and pathological conditions is generating an intense interest in the potential for therapeutic modulation of FcRn binding to IgG and albumin.


Springer Seminars in Immunopathology | 2006

IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity

Masaru Yoshida; Atsuhiro Masuda; Timothy T. Kuo; Kanna Kobayashi; Steven M. Claypool; Tetsuya Takagawa; Hiromu Kutsumi; Takeshi Azuma; Wayne I. Lencer; Richard S. Blumberg

Mucosal secretions of the human gastrointestinal, respiratory, and genital tracts contain significant quantities of IgG. The neonatal Fc receptor for IgG (FcRn) plays a major role in regulating host IgG levels and transporting IgG and associated antigens across polarized epithelial barriers. The FcRn can then recycle the IgG/antigen complex back across the intestinal barrier into the lamina propria for processing by dendritic cells and presentation to CD4+ T cells in regional organized lymphoid structures. FcRn, through its ability to secrete and absorb IgG, thus integrates luminal antigen encounters with systemic immune compartments and, as such, provides essential host defense and immunoregulatory functions at the mucosal surfaces.

Collaboration


Dive into the Timothy T. Kuo's collaboration.

Top Co-Authors

Avatar

Richard S. Blumberg

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Wayne I. Lencer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristi Baker

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo-Wang Qiao

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Claypool

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Takashi Nagaishi

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge