Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy V. Larson is active.

Publication


Featured researches published by Timothy V. Larson.


Journal of Exposure Science and Environmental Epidemiology | 2006

PM source apportionment and health effects: 1. Intercomparison of source apportionment results

Philip K. Hopke; Kazuhiko Ito; Therese F. Mar; William F. Christensen; Delbert J. Eatough; Ronald C. Henry; Eugene Kim; Francine Laden; Ramona Lall; Timothy V. Larson; Hao Liu; Lucas M. Neas; Joseph P. Pinto; Matthias Stölzel; Helen Suh; Pentti Paatero; George D. Thurston

During the past three decades, receptor models have been used to identify and apportion ambient concentrations to sources. A number of groups are employing these methods to provide input into air quality management planning. A workshop has explored the use of resolved source contributions in health effects models. Multiple groups have analyzed particulate composition data sets from Washington, DC and Phoenix, AZ. Similar source profiles were extracted from these data sets by the investigators using different factor analysis methods. There was good agreement among the major resolved source types. Crustal (soil), sulfate, oil, and salt were the sources that were most unambiguously identified (generally highest correlation across the sites). Traffic and vegetative burning showed considerable variability among the results with variability in the ability of the methods to partition the motor vehicle contributions between gasoline and diesel vehicles. However, if the total motor vehicle contributions are estimated, good correspondence was obtained among the results. The source impacts were especially similar across various analyses for the larger mass contributors (e.g., in Washington, secondary sulfate SE=7% and 11% for traffic; in Phoenix, secondary sulfate SE=17% and 7% for traffic). Especially important for time-series health effects assessment, the source-specific impacts were found to be highly correlated across analysis methods/researchers for the major components (e.g., mean analysis to analysis correlation, r>0.9 for traffic and secondary sulfates in Phoenix and for traffic and secondary nitrates in Washington. The sulfate mean r value is >0.75 in Washington.). Overall, although these intercomparisons suggest areas where further research is needed (e.g., better division of traffic emissions between diesel and gasoline vehicles), they provide support the contention that PM2.5 mass source apportionment results are consistent across users and methods, and that todays source apportionment methods are robust enough for application to PM2.5 health effects assessments.


Epidemiology | 1999

Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994.

Lianne Sheppard; Drew Levy; Gary A. Norris; Timothy V. Larson; Jane Q. Koenig

As part of the Clean Air Act, Congress has directed EPA to set air quality standards to protect sensitive population groups from air pollutants in the ambient environment. People with asthma represent one such group. We undertook a study of the relation between measured ambient air pollutants in Seattle and nonelderly hospital admissions with a principal diagnosis of asthma. We regressed daily hospital admissions to local hospitals for area residents from 1987 through 1994 on particulate matter less than 10 and 2.5 microm in aerodynamic diameter (PM10 and PM2.5, respectively); coarse particulate mass; sulfur dioxide (SO2); ozone (O3); and carbon monoxide (CO) in a Poisson regression model with control for time trends, seasonal variations, and temperature-related weather effects. With the exception of seasonally monitored O3, we supplemented incomplete pollutant measures in a multiple imputation model to create a complete time series of exposure measures. We found an estimated 4-5% increase in the rate of asthma hospital admissions associated with an interquartile range change in PM (19 microg/m3 PM(10),11.8 microg/m3 PM2.5, and 9.3 microg/m3 coarse particulate mass) lagged 1 day; relative rates were as follows: for PM10, 1.05 [95% confidence interval (CI) = 1.02-1.08]; for PM2.5, 1.04 (95% CI = 1.02-1.07); and for coarse particulate mass, 1.04 (95% CI = 1.01-1.07). In single-pollutant models we also found that a 6% increase in the rate of admission was associated with an interquartile range change in CO (interquartile range, 924 parts per billion; 95% CI = 1.03-1.09) at a lag of 3 days and an interquartile range change in O3 (interquartile range, 20 parts per billion; 95% CI = 1.02-1.11) at a lag of 2 days. We did not observe an association for SO2. We found PM and CO to be jointly associated with asthma admissions. We estimated the highest increase in risk in the spring and fall seasons.


Environmental Health Perspectives | 2005

Associations between Health Effects and Particulate Matter and Black Carbon in Subjects with Respiratory Disease

Karen Jansen; Timothy V. Larson; Jane Q. Koenig; Therese F. Mar; Carrie Fields; James A. Stewart; Morton Lippmann

We measured fractional exhaled nitric oxide (FENO), spirometry, blood pressure, oxygen saturation of the blood (SaO2), and pulse rate in 16 older subjects with asthma or chronic obstructive pulmonary disease (COPD) in Seattle, Washington. Data were collected daily for 12 days. We simultaneously collected PM10 and PM2.5 (particulate matter ≤10 μm or ≤2.5 μm, respectively) filter samples at a central outdoor site, as well as outside and inside the subjects’ homes. Personal PM10 filter samples were also collected. All filters were analyzed for mass and light absorbance. We analyzed within-subject associations between health outcomes and air pollution metrics using a linear mixed-effects model with random intercept, controlling for age, ambient relative humidity, and ambient temperature. For the 7 subjects with asthma, a 10 μg/m3 increase in 24-hr average outdoor PM10 and PM2.5 was associated with a 5.9 [95% confidence interval (CI), 2.9–8.9] and 4.2 ppb (95% CI, 1.3–7.1) increase in FENO, respectively. A 1 μg/m3 increase in outdoor, indoor, and personal black carbon (BC) was associated with increases in FENO of 2.3 ppb (95% CI, 1.1–3.6), 4.0 ppb (95% CI, 2.0–5.9), and 1.2 ppb (95% CI, 0.2–2.2), respectively. No significant association was found between PM or BC measures and changes in spirometry, blood pressure, pulse rate, or SaO2 in these subjects. Results from this study indicate that FENO may be a more sensitive marker of PM exposure than traditional health outcomes and that particle-associated BC is useful for examining associations between primary combustion constituents of PM and health outcomes.


Environmental Health Perspectives | 2005

Pulmonary Effects of Indoor- and Outdoor-Generated Particles in Children with Asthma

Jane Q. Koenig; Therese F. Mar; Ryan W. Allen; Karen Jansen; Thomas Lumley; Jeffrey H. Sullivan; Carol A. Trenga; Timothy V. Larson; L.-Jane S. Liu

Most particulate matter (PM) health effects studies use outdoor (ambient) PM as a surrogate for personal exposure. However, people spend most of their time indoors exposed to a combination of indoor-generated particles and ambient particles that have infiltrated. Thus, it is important to investigate the differential health effects of indoor- and ambient-generated particles. We combined our recently adapted recursive model and a predictive model for estimating infiltration efficiency to separate personal exposure (E) to PM2.5 (PM with aerodynamic diameter ≤2.5 μm) into its indoor-generated (Eig) and ambient-generated (Eag) components for 19 children with asthma. We then compared Eig and Eag to changes in exhaled nitric oxide (eNO), a marker of airway inflammation. Based on the recursive model with a sample size of eight children, Eag was marginally associated with increases in eNO [5.6 ppb per 10-μg/m3 increase in PM2.5; 95% confidence interval (CI), −0.6 to 11.9; p = 0.08]. Eig was not associated with eNO (−0.19 ppb change per 10μg/m3). Our predictive model allowed us to estimate Eag and Eig for all 19 children. For those combined estimates, only Eag was significantly associated with an increase in eNO (Eag: 5.0 ppb per 10-μg/m3 increase in PM2.5; 95% CI, 0.3 to 9.7; p = 0.04; Eig: 3.3 ppb per 10-μg/m3 increase in PM2.5; 95% CI, −1.1 to 7.7; p = 0.15). Effects were seen only in children who were not using corticosteroid therapy. We conclude that the ambient-generated component of PM2.5 exposure is consistently associated with increases in eNO and the indoor-generated component is less strongly associated with eNO.


Atmospheric Research | 2003

Source identification of PM2.5 in an arid Northwest U.S. City by positive matrix factorization

Eugene Kim; Timothy V. Larson; Philip K. Hopke; Chris Slaughter; Lianne Sheppard; Candis Claiborn

Spokane, WA is prone to frequent particulate pollution episodes due to dust storms, biomass burning, and periods of stagnant meteorological conditions. Spokane is the location of a long-term study examining the association between health effects and chemical or physical constituents of particulate pollution. Positive matrix factorization (PMF) was used to deduce the sources of PM2.5 (particulate matter V2.5 Am in aerodynamic diameter) at a residential site in Spokane from 1995 through 1997. A total of 16 elements in 945 daily PM2.5 samples were measured. The PMF results indicated that seven sources independently contribute to the observed PM2.5 mass: vegetative burning (44%), sulfate aerosol (19%), motor vehicle (11%), nitrate aerosol (9%), airborne soil (9%), chlorinerich source (6%) and metal processing (3%). Conditional probability functions were computed using surface wind data and the PMF deduced mass contributions from each source and were used to identify local point sources. Concurrently measured carbon monoxide and nitrogen oxides were correlated with the PM2.5 from both motor vehicles and vegetative burning. D 2003 Elsevier Science B.V. All rights reserved.


Environmental Health Perspectives | 2005

Workgroup Report: Workshop on Source Apportionment of Particulate Matter Health Effects—Intercomparison of Results and Implications

George D. Thurston; Kazuhiko Ito; Therese F. Mar; William F. Christensen; Delbert J. Eatough; Ronald C. Henry; Eugene Kim; Francine Laden; Ramona Lall; Timothy V. Larson; Hao Liu; Lucas M. Neas; Joseph P. Pinto; Matthias Stölzel; Helen Suh; Philip K. Hopke

Although the association between exposure to ambient fine particulate matter with aerodynamic diameter < 2.5 μm (PM2.5) and human mortality is well established, the most responsible particle types/sources are not yet certain. In May 2003, the U.S. Environmental Protection Agency’s Particulate Matter Centers Program sponsored the Workshop on the Source Apportionment of PM Health Effects. The goal was to evaluate the consistency of the various source apportionment methods in assessing source contributions to daily PM2.5 mass–mortality associations. Seven research institutions, using varying methods, participated in the estimation of source apportionments of PM2.5 mass samples collected in Washington, DC, and Phoenix, Arizona, USA. Apportionments were evaluated for their respective associations with mortality using Poisson regressions, allowing a comparative assessment of the extent to which variations in the apportionments contributed to variability in the source-specific mortality results. The various research groups generally identified the same major source types, each with similar elemental makeups. Intergroup correlation analyses indicated that soil-, sulfate-, residual oil-, and salt-associated mass were most unambiguously identified by various methods, whereas vegetative burning and traffic were less consistent. Aggregate source-specific mortality relative risk (RR) estimate confidence intervals overlapped each other, but the sulfate-related PM2.5 component was most consistently significant across analyses in these cities. Analyses indicated that source types were a significant predictor of RR, whereas apportionment group differences were not. Variations in the source apportionments added only some 15% to the mortality regression uncertainties. These results provide supportive evidence that existing PM2.5 source apportionment methods can be used to derive reliable insights into the source components that contribute to PM2.5 health effects.


Atmospheric Environment | 1978

Chemical properties of tropospheric sulfur aerosols

Robert J. Charlson; David S. Covert; Timothy V. Larson; Alan P. Waggoner

Abstract Sulfur is widely recognized as an element present in atmospheric aerosol; however, only recently have data been acquired showing the dominance in industrial regions of submicrometer tropospheric aerosol by a family of sulfate compounds ranging from H2SO4 to (NH4)2SO4. It is possible to infer the presence of other molecular forms and oxidation states. The overall picture is as yet qualitative, with semiquantitative evidence showing that both the urban and rural aerosols in the eastern third of the United States consist mainly of impure sulfate compounds containing substantial amounts of water, with metal and organic compounds as trace inclusions. Among chief physico-chemical consequences of the dominance by sulfates are the fundamental nature of hygroscopic growth and predictable variations in refractive index. It is important to emphasize the role of omnipresent impurities and their possible effects.


Journal of Exposure Science and Environmental Epidemiology | 2006

PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ

Therese F. Mar; Kazuhiko Ito; Jane Q. Koenig; Timothy V. Larson; Delbert J. Eatough; Ronald C. Henry; Eugene Kim; Francine Laden; Ramona Lall; Lucas M. Neas; Matthias Stölzel; Pentti Paatero; Philip K. Hopke; George D. Thurston

As part of an EPA-sponsored workshop to investigate the use of source apportionment in health effects analyses, the associations between the participants estimated source contributions of PM2.5 for Phoenix, AZ for the period from 1995–1997 and cardiovascular and total nonaccidental mortality were analyzed using Poisson generalized linear models (GLM). The base model controlled for extreme temperatures, relative humidity, day of week, and time trends using natural spline smoothers. The same mortality model was applied to all of the apportionment results to provide a consistent comparison across source components and investigators/methods. Of the apportioned anthropogenic PM2.5 source categories, secondary sulfate, traffic, and copper smelter-derived particles were most consistently associated with cardiovascular mortality. The sources with the largest cardiovascular mortality effect size were secondary sulfate (median estimate=16.0% per 5th-to-95th percentile increment at lag 0 day among eight investigators/methods) and traffic (median estimate=13.2% per 5th-to-95th percentile increment at lag 1 day among nine investigators/methods). For total mortality, the associations were weaker. Sea salt was also found to be associated with both total and cardiovascular mortality, but at 5 days lag. Fine particle soil and biomass burning factors were not associated with increased risks. Variations in the maximum effect lag varied by source category suggesting that past analyses considering only single lags of PM2.5 may have underestimated health impact contributions at different lags. Further research is needed on the possibility that different PM2.5 source components may have different effect lag structure. There was considerable consistency in the health effects results across source apportionments in their effect estimates and their lag structures. Variations in results across investigators/methods were small compared to the variations across source categories. These results indicate reproducibility of source apportionment results across investigative groups and support applicability of these methods to effects studies. However, future research will also need to investigate a number of other important issues including accuracy of results.


The Lancet | 2016

Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study

Joel D. Kaufman; Sara D. Adar; R. Graham Barr; Matthew J. Budoff; Gregory L. Burke; Cynthia L. Curl; Martha L. Daviglus; Ana V. Diez Roux; Amanda J. Gassett; David R. Jacobs; Richard A. Kronmal; Timothy V. Larson; Ana Navas-Acien; Casey Olives; Paul D. Sampson; Lianne Sheppard; David S. Siscovick; James H. Stein; Adam A. Szpiro; Karol E. Watson

BACKGROUND Long-term exposure to fine particulate matter less than 2.5 μm in diameter (PM2.5) and traffic-related air pollutant concentrations are associated with cardiovascular risk. The disease process underlying these associations remains uncertain. We aim to assess association between long-term exposure to ambient air pollution and progression of coronary artery calcium and common carotid artery intima-media thickness. METHODS In this prospective 10-year cohort study, we repeatedly measured coronary artery calcium by CT in 6795 participants aged 45-84 years enrolled in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) in six metropolitan areas in the USA. Repeated scans were done for nearly all participants between 2002 and 2005, for a subset of participants between 2005 and 2007, and for half of all participants between 2010 and 2012. Common carotid artery intima-media thickness was measured by ultrasound in all participants at baseline and in 2010-12 for 3459 participants. Residence-specific spatio-temporal pollution concentration models, incorporating community-specific measurements, agency monitoring data, and geographical predictors, estimated concentrations of PM2.5 and nitrogen oxides (NOX) between 1999 and 2012. The primary aim was to examine the association between both progression of coronary artery calcium and mean carotid artery intima-media thickness and long-term exposure to ambient air pollutant concentrations (PM2.5, NOX, and black carbon) between examinations and within the six metropolitan areas, adjusting for baseline age, sex, ethnicity, socioeconomic characteristics, cardiovascular risk factors, site, and CT scanner technology. FINDINGS In this population, coronary calcium increased on average by 24 Agatston units per year (SD 58), and intima-media thickness by 12 μm per year (10), before adjusting for risk factors or air pollutant exposures. Participant-specific pollutant concentrations averaged over the years 2000-10 ranged from 9.2-22.6 μg PM2.5/m(3) and 7.2-139.2 parts per billion (ppb) NOX. For each 5 μg PM2.5/m(3) increase, coronary calcium progressed by 4.1 Agatston units per year (95% CI 1.4-6.8) and for each 40 ppb NOX coronary calcium progressed by 4.8 Agatston units per year (0.9-8.7). Pollutant exposures were not associated with intima-media thickness change. The estimate for the effect of a 5 μg/m(3) higher long-term exposure to PM2.5 in intima-media thickness was -0.9 μm per year (95% CI -3.0 to 1.3). For 40 ppb higher NOX, the estimate was 0.2 μm per year (-1.9 to 2.4). INTERPRETATION Increased concentrations of PM2.5 and traffic-related air pollution within metropolitan areas, in ranges commonly encountered worldwide, are associated with progression in coronary calcification, consistent with acceleration of atherosclerosis. This study supports the case for global efforts of pollution reduction in prevention of cardiovascular diseases. FUNDING US Environmental Protection Agency and US National Institutes of Health.


American Journal of Epidemiology | 2012

Prospective study of particulate air pollution exposures, subclinical atherosclerosis, and clinical cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

Joel D. Kaufman; Sara D. Adar; Ryan W. Allen; R. Graham Barr; Matthew J. Budoff; Gregory L. Burke; Adrian M. Casillas; Martin Cohen; Cynthia L. Curl; Martha L. Daviglus; Ana V. Diez Roux; David R. Jacobs; Richard A. Kronmal; Timothy V. Larson; Sally Liu; Thomas Lumley; Ana Navas-Acien; Daniel H. O'Leary; Jerome I. Rotter; Paul D. Sampson; Lianne Sheppard; David S. Siscovick; James H. Stein; Adam A. Szpiro; Russell P. Tracy

The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) was initiated in 2004 to investigate the relation between individual-level estimates of long-term air pollution exposure and the progression of subclinical atherosclerosis and the incidence of cardiovascular disease (CVD). MESA Air builds on a multicenter, community-based US study of CVD, supplementing that study with additional participants, outcome measurements, and state-of-the-art air pollution exposure assessments of fine particulate matter, oxides of nitrogen, and black carbon. More than 7,000 participants aged 45-84 years are being followed for over 10 years for the identification and characterization of CVD events, including acute myocardial infarction and other coronary artery disease, stroke, peripheral artery disease, and congestive heart failure; cardiac procedures; and mortality. Subcohorts undergo baseline and follow-up measurements of coronary artery calcium using computed tomography and carotid artery intima-medial wall thickness using ultrasonography. This cohort provides vast exposure heterogeneity in ranges currently experienced and permitted in most developed nations, and the air monitoring and modeling methods employed will provide individual estimates of exposure that incorporate residence-specific infiltration characteristics and participant-specific time-activity patterns. The overarching study aim is to understand and reduce uncertainty in health effect estimation regarding long-term exposure to air pollution and CVD.

Collaboration


Dive into the Timothy V. Larson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Q. Koenig

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Timothy Gould

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam A. Szpiro

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Brauer

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge