Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy Van Meter is active.

Publication


Featured researches published by Timothy Van Meter.


Cancer Cell | 2012

Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma

Dominik Sturm; Hendrik Witt; Volker Hovestadt; Dong Anh Khuong-Quang; David T. W. Jones; Carolin Konermann; Elke Pfaff; Martje Tönjes; Martin Sill; Sebastian Bender; Marcel Kool; Marc Zapatka; Natalia Becker; Manuela Zucknick; Thomas Hielscher; Xiao Yang Liu; Adam M. Fontebasso; Marina Ryzhova; Steffen Albrecht; Karine Jacob; Marietta Wolter; Martin Ebinger; Martin U. Schuhmann; Timothy Van Meter; Michael C. Frühwald; Holger Hauch; Arnulf Pekrun; Bernhard Radlwimmer; Tim Niehues; Gregor Von Komorowski

Glioblastoma (GBM) is a brain tumor that carries a dismal prognosis and displays considerable heterogeneity. We have recently identified recurrent H3F3A mutations affecting two critical amino acids (K27 and G34) of histone H3.3 in one-third of pediatric GBM. Here, we show that each H3F3A mutation defines an epigenetic subgroup of GBM with a distinct global methylation pattern, and that they are mutually exclusive with IDH1 mutations, which characterize a third mutation-defined subgroup. Three further epigenetic subgroups were enriched for hallmark genetic events of adult GBM and/or established transcriptomic signatures. We also demonstrate that the two H3F3A mutations give rise to GBMs in separate anatomic compartments, with differential regulation of transcription factors OLIG1, OLIG2, and FOXG1, possibly reflecting different cellular origins.


Nature Genetics | 2009

Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma

Paul A. Northcott; Yukiko Nakahara; Xiaochong Wu; Lars Feuk; David W. Ellison; Sid Croul; Stephen C. Mack; Paul N. Kongkham; John Peacock; Adrian Dubuc; Young Shin Ra; Karen Zilberberg; Jessica McLeod; Stephen W. Scherer; J. Sunil Rao; Charles G. Eberhart; Wiesia Grajkowska; Yancey Gillespie; Boleslaw Lach; Richard Grundy; Ian F. Pollack; Ronald L. Hamilton; Timothy Van Meter; Carlos Gilberto Carlotti; Frederick A. Boop; Darrell D. Bigner; Richard J. Gilbertson; James T. Rutka; Michael D. Taylor

We used high-resolution SNP genotyping to identify regions of genomic gain and loss in the genomes of 212 medulloblastomas, malignant pediatric brain tumors. We found focal amplifications of 15 known oncogenes and focal deletions of 20 known tumor suppressor genes (TSG), most not previously implicated in medulloblastoma. Notably, we identified previously unknown amplifications and homozygous deletions, including recurrent, mutually exclusive, highly focal genetic events in genes targeting histone lysine methylation, particularly that of histone 3, lysine 9 (H3K9). Post-translational modification of histone proteins is critical for regulation of gene expression, can participate in determination of stem cell fates and has been implicated in carcinogenesis. Consistent with our genetic data, restoration of expression of genes controlling H3K9 methylation greatly diminishes proliferation of medulloblastoma in vitro. Copy number aberrations of genes with critical roles in writing, reading, removing and blocking the state of histone lysine methylation, particularly at H3K9, suggest that defective control of the histone code contributes to the pathogenesis of medulloblastoma.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Cancer Research | 2009

The miR-17/92 Polycistron Is Up-regulated in Sonic Hedgehog–Driven Medulloblastomas and Induced by N-myc in Sonic Hedgehog–Treated Cerebellar Neural Precursors

Paul A. Northcott; Africa Fernandez-L; John P. Hagan; David W. Ellison; Wesia Grajkowska; Yancey Gillespie; Richard Grundy; Timothy Van Meter; James T. Rutka; Carlo M. Croce; Anna Marie Kenney; Michael D. Taylor

Medulloblastoma is the most common malignant pediatric brain tumor, and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution single-nucleotide polymorphism genotyping arrays and subsequent interphase fluorescence in situ hybridization on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs (miRNA) in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated miRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the sonic hedgehog (Shh) signaling pathway compared with other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNP), proposed cells of origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.


Molecular Cancer Therapeutics | 2009

Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion

Sarah E. Golding; Elizabeth Rosenberg; Nicholas C.K. Valerie; Isa Hussaini; Mark Frigerio; Xiao-Ling Fan Cockcroft; Wei Yee Chong; Marc Geoffery Hummersone; Laurent Jean Martin Rigoreau; Keith Menear; Mark J. O'Connor; Lawrence F. Povirk; Timothy Van Meter

Ataxia telangiectasia (A-T) mutated (ATM) is critical for cell cycle checkpoints and DNA repair. Thus, specific small molecule inhibitors targeting ATM could perhaps be developed into efficient radiosensitizers. Recently, a specific inhibitor of the ATM kinase, KU-55933, was shown to radiosensitize human cancer cells. Herein, we report on an improved analogue of KU-55933 (KU-60019) with Ki and IC50 values half of those of KU-55933. KU-60019 is 10-fold more effective than KU-55933 at blocking radiation-induced phosphorylation of key ATM targets in human glioma cells. As expected, KU-60019 is a highly effective radiosensitizer of human glioma cells. A-T fibroblasts were not radiosensitized by KU-60019, strongly suggesting that the ATM kinase is specifically targeted. Furthermore, KU-60019 reduced basal S473 AKT phosphorylation, suggesting that the ATM kinase might regulate a protein phosphatase acting on AKT. In line with this finding, the effect of KU-60019 on AKT phosphorylation was countered by low levels of okadaic acid, a phosphatase inhibitor, and A-T cells were impaired in S473 AKT phosphorylation in response to radiation and insulin and unresponsive to KU-60019. We also show that KU-60019 inhibits glioma cell migration and invasion in vitro, suggesting that glioma growth and motility might be controlled by ATM via AKT. Inhibitors of MEK and AKT did not further radiosensitize cells treated with KU-60019, supporting the idea that KU-60019 interferes with prosurvival signaling separate from its radiosensitizing properties. Altogether, KU-60019 inhibits the DNA damage response, reduces AKT phosphorylation and prosurvival signaling, inhibits migration and invasion, and effectively radiosensitizes human glioma cells. [Mol Cancer Ther 2009;8(10):2894–902]


Lancet Oncology | 2012

Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis

Daniel Picard; Suzanne Miller; Cynthia Hawkins; Eric Bouffet; Hazel Rogers; Tiffany Chan; Seung Ki Kim; Young Shin Ra; Jason Fangusaro; Andrey Korshunov; Helen Toledano; Hideo Nakamura; James T. Hayden; Jennifer A. Chan; Lucie Lafay-Cousin; Pingzhao Hu; Xing Fan; Karin M. Muraszko; Scott L. Pomeroy; Ching C. Lau; Ho Keung Ng; Chris Jones; Timothy Van Meter; Steven C. Clifford; Charles G. Eberhart; Amar Gajjar; Stefan M. Pfister; Richard Grundy; Annie Huang

BACKGROUND Childhood CNS primitive neuro-ectodermal brain tumours (PNETs) are very aggressive brain tumours for which the molecular features and best treatment approaches are unknown. We assessed a large cohort of these rare tumours to identify molecular markers to enhance clinical management of this disease. METHODS We obtained 142 primary hemispheric CNS PNET samples from 20 institutions in nine countries and examined transcriptional profiles for a subset of 51 samples and copy number profiles for a subset of 77 samples. We used clustering, gene, and pathway enrichment analyses to identify tumour subgroups and group-specific molecular markers, and applied immunohistochemical and gene-expression analyses to validate and assess the clinical significance of the subgroup markers. FINDINGS We identified three molecular subgroups of CNS PNETs that were distinguished by primitive neural (group 1), oligoneural (group 2), and mesenchymal lineage (group 3) gene-expression signatures with differential expression of cell-lineage markers LIN28 and OLIG2. Patients with group 1 tumours were most often female (male:female ratio 0·61 for group 1 vs 1·25 for group 2 and 1·63 for group 3; p=0·043 [group 1 vs groups 2 and 3]), youngest (median age at diagnosis 2·9 years [95% CI 2·4-5·2] for group 1 vs 7·9 years [6·0-9·7] for group 2 and 5·9 years [4·9-7·8] for group 3; p=0·005), and had poorest survival (median survival 0·8 years [95% CI 0·5-1·2] in group 1, 1·8 years [1·4-2·3] in group 2 and 4·3 years [0·8-7·8] in group 3; p=0·019). Patients with group 3 tumours had the highest incidence of metastases at diagnosis (no distant metastasis:metastasis ratio 0·90 for group 3 vs 2·80 for group 1 and 5·67 for group 2; p=0·037). INTERPRETATION LIN28 and OLIG2 are promising diagnostic and prognostic molecular markers for CNS PNET that warrant further assessment in prospective clinical trials. FUNDING Canadian Institute of Health Research, Brainchild/SickKids Foundation, and the Samantha Dickson Brain Tumour Trust.


Molecular Cancer Therapeutics | 2008

Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas

Fan Yang; Timothy Van Meter; Ralf Buettner; Michael Hedvat; Wei Liang; Claudia M. Kowolik; Nilesh Mepani; Janni Mirosevich; Sangkil Nam; Mike Y. Chen; Gary W. Tye; Mark Kirschbaum; Richard Jove

Medulloblastomas are the most frequent malignant brain tumors in children. Sorafenib (Nexavar, BAY43-9006), a multikinase inhibitor, blocks cell proliferation and induces apoptosis in a variety of tumor cells. Sorafenib inhibited proliferation and induced apoptosis in two established cell lines (Daoy and D283) and a primary culture (VC312) of human medulloblastomas. In addition, sorafenib inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) in both cell lines and primary tumor cells. The inhibition of phosphorylated STAT3 (Tyr705) occurs in a dose- and time-dependent manner. In contrast, AKT (protein kinase B) was only decreased in D283 and VC312 medulloblastoma cells and mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2) were not inhibited by sorafenib in these cells. Both D-type cyclins (D1, D2, and D3) and E-type cyclin were down-regulated by sorafenib. Also, expression of the antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was decreased and correlated with apoptosis induced by sorafenib. Finally, sorafenib suppressed the growth of human medulloblastoma cells in a mouse xenograft model. Together, our data show that sorafenib blocks STAT3 signaling as well as expression of cell cycle and apoptosis regulatory proteins, associated with inhibition of cell proliferation and induction of apoptosis in medulloblastomas. These findings provide a rationale for treatment of pediatric medulloblastomas with sorafenib. [Mol Cancer Ther 2008;7(11):3519–26]


Cancer Cell | 2017

Intertumoral Heterogeneity within Medulloblastoma Subgroups

Florence M.G. Cavalli; Marc Remke; Ladislav Rampasek; John Peacock; David Shih; Betty Luu; Livia Garzia; Jonathon Torchia; Carolina Nör; A. Sorana Morrissy; Sameer Agnihotri; Yuan Yao Thompson; Claudia M. Kuzan-Fischer; Hamza Farooq; Keren Isaev; Craig Daniels; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Ji Yeoun Lee; Wieslawa A. Grajkowska; Marta Perek-Polnik; Alexandre Vasiljevic; Cécile Faure-Conter; Anne Jouvet; Caterina Giannini; Amulya A. Nageswara Rao; Kay Ka Wai Li; Ho Keung Ng; Charles G. Eberhart

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Molecular Cancer Research | 2010

Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways.

Fan Yang; Veronica Jove; Hong Xin; Michael Hedvat; Timothy Van Meter; Hua Yu

Medulloblastomas are the most frequent malignant brain tumors in children. Sunitinib is an oral multitargeted tyrosine kinase inhibitor used in clinical trials as an antiangiogenic agent for cancer therapy. In this report, we show that sunitinib induced apoptosis and inhibited cell proliferation of both a short-term primary culture (VC312) and an established cell line (Daoy) of human medulloblastomas. Sunitinib treatment resulted in the activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase and upregulation of proapoptotic genes, Bak and Bim, and inhibited the expression of survivin, an antiapoptotic protein. Sunitinib treatment also downregulated cyclin E, cyclin D2, and cyclin D3 and upregulated p21Cip1, all of which are involved in regulating cell cycle. In addition, it inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and AKT (protein kinase B) in the tumor cells. Dephosphorylation of STAT3 (Tyr705) induced by sunitinib was helped by a reduction in activities of Janus-activated kinase 2 and Src. Additionally, sodium vanadate, an inhibitor of protein tyrosine phosphatases, partially blocked the inhibition of phosphorylated STAT3 by sunitinib. Loss of phosphorylated AKT after sunitinib treatment was accompanied by decreased phosphorylation of downstream proteins glycogen synthase kinase-3β and mammalian target of rapamycin. Expression of a constitutively activated STAT3 mutant or myristoylated AKT partially blocked the effects of sunitinib in these tumor cells. Sunitinib also inhibited the migration of medulloblastoma tumor cells in vitro. These findings suggest the potential use of sunitinib for the treatment of pediatric medulloblastomas. Mol Cancer Res; 8(1); 35–45


Lancet Oncology | 2015

Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis

Jonathon Torchia; Daniel Picard; Lucie Lafay-Cousin; Cynthia Hawkins; Seung Ki Kim; Louis Letourneau; Young Shin Ra; King Ching Ho; Tiffany Chan; Patrick Sin-Chan; Christopher Dunham; Stephen Yip; Ho Keung Ng; Jian Qiang Lu; Steffen Albrecht; José Pimentel; Jennifer A. Chan; Gino R. Somers; Maria Zielenska; Claudia C. Faria; Lucia Roque; Berivan Baskin; Diane K. Birks; Nick Foreman; Douglas Strother; Almos Klekner; Miklós Garami; Péter Hauser; Tibor Hortobágyi; László Bognár

BACKGROUND Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.

Collaboration


Dive into the Timothy Van Meter's collaboration.

Top Co-Authors

Avatar

William C. Broaddus

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Dubuc

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Northcott

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Stefan M. Pfister

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gary W. Tye

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge