Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy W. Gant is active.

Publication


Featured researches published by Timothy W. Gant.


Chemico-Biological Interactions | 1988

Redox cycling and sulphydryl arylation; Their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes

Timothy W. Gant; D. N. Ramakrishna Rao; Ronald P. Mason; Gerald M. Cohen

Quinones are believed to be toxic by a mechanism involving redox cycling and oxidative stress. In this study, we have used 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ), which redox cycles to the same degree as menadione, but does not react with free thiol groups, to distinguish between the importance of redox cycling and arylation of free thiol groups in the causation of toxicity to isolated hepatocytes. Menadione was significantly more toxic to isolated hepatocytes than 2,3-diOMe-1,4-NQ. Both menadione and 2,3-diOMe-1,4-NQ caused an extensive GSH depletion accompanied by GSSG formation, preceding loss of viability. Both compounds stimulated a similar increase in oxygen uptake in isolated hepatocytes and NADPH oxidation in microsomes suggesting they both redox cycle to similar extents. Further evidence for the redox cycling in intact hepatocytes was the detection of the semiquinone anion radicals with electron spin resonance spectroscopy. In addition we have, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), demonstrated for the first time the formation of superoxide anion radicals by intact hepatocytes. These radicals result from oxidation of the semiquinone by oxygen and further prove that both these quinones redox cycle in intact hepatocytes. We conclude that while oxidative processes may cause toxicity, the arylation of intracellular thiols or nucleophiles also contributes significantly to the cytotoxicity of compounds such as menadione.


Leukemia | 2007

Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa

Satoshi Inoue; Joan Riley; Timothy W. Gant; Martin J. S. Dyer; Gerald M. Cohen

Several histone deacetylase inhibitors (HDACi), which have recently entered early clinical trials, exert their anticancer activity in part through the induction of apoptosis although the precise mechanism of this induction is not known. Induction of apoptosis by structurally diverse HDACi in primary cells from patients with chronic lymphocytic leukemia (CLL) and different leukemic cell lines was mediated by the Bcl-2 regulated intrinsic pathway and demonstrated a requirement for de novo protein synthesis. A marked time-dependent induction of the pro-apoptotic BH3-only proteins, Bim, Noxa and Bmf was observed, which preceded the induction of apoptosis. A key role for both Bim and Noxa was proposed in HDACi-mediated apoptosis based on our findings that siRNA for Bim and Noxa but not Bmf largely prevented the HDACi-induced loss in mitochondrial membrane potential, caspase processing and phosphatidylserine externalization. Noxa, induced by HDACi, in CLL cells and tumor cell lines, bound extensively to Mcl-1, a major anti-apoptotic Bcl-2 family member present in CLL cells. Our data strongly suggests that HDACi induce apoptosis primarily through inactivation of anti-apoptotic Bcl-2 family members by increases in Bim and Noxa and highlights these increases as a potential clinical target for CLL/lymphoma therapy.


FEBS Letters | 1986

Semiquinone anion radicals formed by the reaction of quinones with glutathione or amino acids

Timothy W. Gant; Mary d'Arcy Doherty; Duro Odowole; Keith D. Sales; Gerald M. Cohen

Quinone Thiol Amino acid ESR Semiquinone anion radical


Cell Death & Differentiation | 2012

A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum.

Shankar Varadarajan; Edward T. W. Bampton; Joshua L. Smalley; Kayoko Tanaka; Rachel E. Caves; Michael Butterworth; Jun Wei; Maurizio Pellecchia; John S. Mitcheson; Timothy W. Gant; David Dinsdale; Gerald M. Cohen

Canonical endoplasmic reticulum (ER) stress, which occurs in many physiological and disease processes, results in activation of the unfolded protein response (UPR). We now describe a new, evolutionarily conserved cellular stress response characterised by a striking, but reversible, reorganisation of ER membranes that occurs independently of the UPR, resulting in impaired ER transport and function. This reorganisation is characterised by a dramatic redistribution and clustering of ER membrane proteins. ER membrane aggregation is regulated, in part, by anti-apoptotic BCL-2 family members, particularly MCL-1. Using connectivity mapping, we report the widespread occurrence of this stress response by identifying several structurally diverse chemicals from different pharmacological classes, including antihistamines, antimalarials and antipsychotics, which induce ER membrane reorganisation. Furthermore, we demonstrate the potential of ER membrane aggregation to result in pathological consequences, such as the long-QT syndrome, a cardiac arrhythmic abnormality, arising because of a novel trafficking defect of the human ether-a-go-go-related channel protein from the ER to the plasma membrane. Thus, ER membrane reorganisation is a feature of a new cellular stress pathway, clearly distinct from the UPR, with important consequences affecting the normal functioning of the ER.


Chemical Research in Toxicology | 2008

Essential Role of the AH Receptor in the Dysfunction of Heme Metabolism Induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

Reginald Davies; Bruce Clothier; Susan W. Robinson; Richard E. Edwards; Peter Greaves; Jinli Luo; Timothy W. Gant; Tatyana Chernova; Andrew G. Smith

The dysfunction of hepatic heme synthesis by 2,3,7,8-tetrachlordibenzo- p-dioxin (TCDD) in mice, enhanced by iron, leads to accumulation of uroporphyrins I and III (uroporphyria) and resembles the human disorder porphyria cutanea tarda (PCT) precipitated by alcohol and estrogenic drugs. Although consequences of TCDD are considered entirely dependent on the aryl hydrocarbon receptor (AHR), this is not proven for uroporphyria. Administration of TCDD (75 microg/kg) caused uroporphyria in susceptible C57BL/6J mice with high-affinity AHR after 5 weeks (>600-fold increase in hepatic uroporphyrins). Transcriptomics showed significant modified gene expressions for intermediary, heme, and iron metabolism as well as for oxidative stress and cell injury. Resistant low-affinity AHR DBA/2 mice (no increase in porphyrins) showed far fewer changes. At this dose of TCDD, persistent up-regulation of some traditional AH battery genes occurred in both strains. Essentiality of AHR was demonstrated with C57BL/6 Ahr knockout mice. Elevation of hepatic uroporphyrins was 964-fold in Ahr (+/+) mice, lower in Ahr (+/-) (60-fold), but undetectable with Ahr (-/-) . Consistent with an oxidative mechanism, iron overload enhanced porphyria as well as general liver injury in Ahr (+/+) and Ahr (+/-) mice but had no interactive effect in Ahr (-/-) . In contrast, when iron-treated mice received, instead of TCDD, the heme precursor 5-aminolevulinic acid (ALA), causing uroporphyia in Ahr (+/+) mice (242-fold rise in uroporphyrins), elevation of uroporphyrins I and III (42-fold) also occurred in Ahr (-/-) mice and was seemingly associated with AHR-independent expression of Cyp1a2. The findings prove that AHR is a key factor in porphyria induced in mice by TCDD. However, in other models of human PCT, participation of AHR may not be an essential requirement.


Chemical Research in Toxicology | 2009

Pivotal Role for Two Electron Reduction in 2,3-Dimethoxy-1,4-naphthoquinone and 2-Methyl-1,4-naphthoquinone Metabolism and Kinetics in Vivo That Prevents Liver Redox Stress

Joel D. Parry; Amy Pointon; Ursula Lutz; Friederike Teichert; Joanne K. Charlwood; Pui Hei Chan; Toby J. Athersuch; Emma L. Taylor; Rajinder Singh; Jinli Luo; Kate M. Phillips; Angelique Vetillard; Jonathan Lyon; Hector C. Keun; Werner Lutz; Timothy W. Gant

2,3-dimethoxy-1,4-naphthoquinone (CAS-RN 6959-96-3) (DMNQ) and 2-methyl-1,4-naphthoquinone (CAS-RN 58-27-5) (MNQ:menadione) are effective one electron redox cycling chemicals in vitro. In addition, in vitro MNQ forms a thioether conjugate with glutathione by nucleophilic attack at the third carbon. In contrast, here we demonstrate that in vivo the major metabolic route is directly to the dihydronaphthoquinone for both DMNQ and MNQ followed by conjugation to mono- and di-glucuronides and sulfate. Analysis of urine and bile showed that glutathione conjugation of MNQ was only a very minor route of metabolism. DMNQ was distributed to all tissues including the brain, and MNQ was much less widely distributed. For DMNQ tissue half-life, in particular for the heart, was considerably longer than the plasma half-life. For both DMNQ and MNQ, urine 8-oxo-7,8-dihydro-2-deoxyguanosine and liver transcriptomic analysis failed to show any evidence of redox stress. Oxidized glutathione (GSSG) in liver increased significantly at the 10 min postdosing time point only. Metabonomic analysis 96 h after DMNQ administration indicated decreased liver glucose and increased lactate and creatine suggesting an impairment of oxidative metabolism. We conclude that in vivo DMNQ and MNQ are primarily two electron reduced to the dihydronaphthoquinones and undergo little one electron redox cycling. For DMNQ, disruption of cellular oxidative metabolism may be a primary mechanism of toxicity rather than redox stress.


Biochemical Pharmacology | 1985

Metabolism of 1-naphthol by tyrosinase

Mary d'Arcy Doherty; Gerald M. Cohen; Timothy W. Gant; Sandra Naish; Patrick A. Riley

1-Naphthol was metabolized by the polyphenol oxidase, tyrosinase, primarily to 1,2-naphthoquinone and to small amounts of 1,4-naphthoquinone as well as to covalently bound products. The inhibition of covalent binding by ethylenediamine, which reacts specifically with 1,2-naphthoquinone but not 1,4-naphthoquinone, suggested that most of the covalent binding was due to 1,2-naphthoquinone or a metabolite of similar structure. The activation by tyrosinase of 1-naphthol to covalently bound products suggested that it may alter the reaction kinetics of the enzyme. This was investigated by studying the effects of 1-naphthol on the tyrosinase-catalysed oxidation of 4-hydroxyanisole. Preincubation of tyrosinase with 1-naphthol increased the lag period of the oxidation of 4-hydroxyanisole, which may be due to a decrease in the amount of active enzyme, as well as to a reaction of 1-naphthol with 3,4-anisylquinone, an oxidation product of 4-hydroxyanisole. The metabolic activation of 1-naphthol by tyrosinase to covalently bound species suggests that 1-naphthol or a structurally related derivative may be of potential therapeutic application in the treatment of cells high in tyrosinase activity, such as certain melanomas.


Cancer Research | 2002

Hepatobiliary Damage and Changes in Hepatic Gene Expression Caused by the Antitumor Drug Ecteinascidin-743 (ET-743) in the Female Rat

Sarah Donald; Richard D. Verschoyle; Richard L. Edwards; David J. Judah; Reginald Davies; Joan Riley; David Dinsdale; Luis Lopez Lazaro; Andrew G. Smith; Timothy W. Gant; Peter Greaves; Andreas J. Gescher


Environmental Health Perspectives | 2002

Intrinsic hepatic phenotype associated with the Cyp1a2 gene as shown by cDNA expression microarray analysis of the knockout mouse

Andrew G. Smith; Reginald Davies; Timothy P. Dalton; Marian L. Miller; David J. Judah; Joan Riley; Timothy W. Gant; Daniel W. Nebert


Environmental Health Perspectives | 2002

Gene expression profiles associated with inflammation, fibrosis and cholestasis in mouse liver after griseofulvin

Timothy W. Gant; Petra R. Baus; Bruce Clothier; Joan Riley; Reginald Davies; David J. Judah; Richard E. Edwards; Elisabeth George; Peter Greaves; Andrew G. Smith

Collaboration


Dive into the Timothy W. Gant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan Riley

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinli Luo

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge