Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timothy Y. James is active.

Publication


Featured researches published by Timothy Y. James.


Journal of Eukaryotic Microbiology | 2005

The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists

Sina M. Adl; Alastair G. B. Simpson; Mark A. Farmer; Robert A. Andersen; O. Roger Anderson; John R. Barta; Samuel S. Bowser; Guy Brugerolle; Robert A. Fensome; Suzanne Fredericq; Timothy Y. James; Sergei Karpov; Paul Kugrens; J. C. Krug; Christopher E. Lane; Louise A. Lewis; Jean Lodge; Denis H. Lynn; David G. Mann; Richard M. McCourt; Leonel Mendoza; Øjvind Moestrup; Sharon E. Mozley-Standridge; Thomas A. Nerad; Carol A. Shearer; Alexey V. Smirnov; Frederick W. Spiegel; “Max” F. J. R. Taylor

Abstract. This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional “kingdoms.” The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.


Nature | 2006

Reconstructing the early evolution of Fungi using a six-gene phylogeny

Timothy Y. James; Frank Kauff; Conrad L. Schoch; P. Brandon Matheny; Cymon J. Cox; Gail Celio; Emily Fraker; Jolanta Miadlikowska; H. Thorsten Lumbsch; Alexandra Rauhut; A. Elizabeth Arnold; Anja Amtoft; Jason E. Stajich; Kentaro Hosaka; Gi-Ho Sung; Desiree Johnson; Michael Crockett; Manfred Binder; Judd M. Curtis; Jason C. Slot; Zheng Wang; Andrew W. Wilson; Arthur Schu; Joyce E. Longcore; David G. Porter; Peter M. Letcher; Martha J. Powell; John W. Taylor; Merlin M. White; Gareth W. Griffith

The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

Diego Martinez; Jean F. Challacombe; Ingo Morgenstern; David S. Hibbett; Monika Schmoll; Christian P. Kubicek; Patricia Ferreira; Francisco J. Ruiz-Dueñas; Ángel T. Martínez; Phil Kersten; Kenneth E. Hammel; Amber Vanden Wymelenberg; Jill Gaskell; Erika Lindquist; Grzegorz Sabat; Sandra Splinter BonDurant; Luis F. Larrondo; Paulo Canessa; Rafael Vicuña; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; Antonio G. Pisabarro; José L. Lavín; José A. Oguiza; Emma R. Master; Bernard Henrissat; Pedro M. Coutinho; Paul Harris; Jon K. Magnuson

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1–4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.


FEBS Journal | 2006

Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences

Patrik J. Hoegger; Sreedhar Kilaru; Timothy Y. James; Jason R. Thacker; Ursula Kües

A phylogenetic analysis of more than 350 multicopper oxidases (MCOs) from fungi, insects, plants, and bacteria provided the basis for a refined classification of this enzyme family into laccases sensu stricto (basidiomycetous and ascomycetous), insect laccases, fungal pigment MCOs, fungal ferroxidases, ascorbate oxidases, plant laccase‐like MCOs, and bilirubin oxidases. Within the largest group of enzymes, formed by the 125 basidiomycetous laccases, the gene phylogeny does not strictly follow the species phylogeny. The enzymes seem to group at least partially according to the lifestyle of the corresponding species. Analyses of the completely sequenced fungal genomes showed that the composition of MCOs in the different species can be very variable. Some species seem to encode only ferroxidases, whereas others have proteins which are distributed over up to four different functional clusters in the phylogenetic tree.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)

Jason E. Stajich; Sarah K. Wilke; Dag Ahrén; Chun Hang Au; Bruce W. Birren; Mark Borodovsky; Claire Burns; Björn Canbäck; Lorna A. Casselton; Chi Keung Cheng; Jixin Deng; Fred S. Dietrich; David C. Fargo; Mark L. Farman; Allen C. Gathman; Jonathan M. Goldberg; Roderic Guigó; Patrick J. Hoegger; James Hooker; Ashleigh Huggins; Timothy Y. James; Takashi Kamada; Sreedhar Kilaru; Chinnapa Kodira; Ursula Kües; Doris M. Kupfer; Hoi Shan Kwan; Alexandre Lomsadze; Weixi Li; Walt W. Lilly

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 108 synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.


Molecular Ecology | 2003

Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone

Erica A. Morehouse; Timothy Y. James; Austen R. D. Ganley; Rytas Vilgalys; Lee Berger; Peter J. Murphy; Joyce E. Longcore

Chytridiomycosis is a recently identified fungal disease associated with global population declines of frogs. Although the fungus, Batrachochytrium dendrobatidis, is considered an emerging pathogen, little is known about its population genetics, including the origin of the current epidemic and how this relates to the dispersal ability of the fungus. In this study, we use multilocus sequence typing to examine genetic diversity and relationships among 35 fungal strains from North America, Africa and Australia. Only five variable nucleotide positions were detected among 10 loci (5918 bp). This low level of genetic variation is consistent with the description of B. dendrobatidis as a recently emerged disease agent. Fixed (i.e. 100%) or nearly fixed frequencies of heterozygous genotypes at two loci suggested that B. dendrobatidis is diploid and primarily reproduces clonally. In contrast to the lack of nucleotide polymorphism, electrophoretic karyotyping of multiple strains demonstrated a number of chromosome length polymorphisms.


Ecohealth | 2006

Amphibian Pathogen Batrachochytrium dendrobatidis Is Inhibited by the Cutaneous Bacteria of Amphibian Species

Reid N. Harris; Timothy Y. James; Antje Lauer; Mary Alice Simon; Amit Patel

Population declines of amphibian species in many parts of the world are associated with a lethal fungal pathogen, Batrachochytrium dendrobatidis. Using laboratory challenge assays, we describe the inhibition of B. dendrobatidis by members of eight genera of bacteria isolated from the skin of two amphibian species that exhibit parental care behavior (Plethodon cinereus and Hemidactylium scutatum). We found that members of three genera of bacteria isolated from the skins of the salamander P. cinereus and members of seven genera isolated from the salamander H. scutatum inhibited the growth of B. dendrobatidis. Understanding how B. dendrobatidis interacts with an ecological community of cutaneous flora may be important in explaining and preventing amphibian population declines.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Elena Fernández-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Timothy Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Ryu Jae San; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Doddapaneni; Venkataramanan Subramanian; José L. Lavín; José A. Oguiza

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Mycologia | 2016

A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data

Joseph W. Spatafora; Ying Chang; Gerald L. Benny; Katy Lazarus; Matthew E. Smith; Mary L. Berbee; Gregory Bonito; Nicolas Corradi; Igor V. Grigoriev; Andrii P. Gryganskyi; Timothy Y. James; Kerry O'Donnell; Robert W. Roberson; Thomas N. Taylor; Jessie K. Uehling; Rytas Vilgalys; Merlin M. White; Jason E. Stajich

Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.


PLOS Pathogens | 2009

Rapid Global Expansion of the Fungal Disease Chytridiomycosis into Declining and Healthy Amphibian Populations

Timothy Y. James; Anastasia P. Litvintseva; Rytas Vilgalys; J. A. T. Morgan; John W. Taylor; Matthew C. Fisher; Lee Berger; Ché Weldon; Louis H. Du Preez; Joyce E. Longcore

The fungal disease chytridiomycosis, caused by Batrachochytrium dendrobatidis, is enigmatic because it occurs globally in both declining and apparently healthy (non-declining) amphibian populations. This distribution has fueled debate concerning whether, in sites where it has recently been found, the pathogen was introduced or is endemic. In this study, we addressed the molecular population genetics of a global collection of fungal strains from both declining and healthy amphibian populations using DNA sequence variation from 17 nuclear loci and a large fragment from the mitochondrial genome. We found a low rate of DNA polymorphism, with only two sequence alleles detected at each locus, but a high diversity of diploid genotypes. Half of the loci displayed an excess of heterozygous genotypes, consistent with a primarily clonal mode of reproduction. Despite the absence of obvious sex, genotypic diversity was high (44 unique genotypes out of 59 strains). We provide evidence that the observed genotypic variation can be generated by loss of heterozygosity through mitotic recombination. One strain isolated from a bullfrog possessed as much allelic diversity as the entire global sample, suggesting the current epidemic can be traced back to the outbreak of a single clonal lineage. These data are consistent with the current chytridiomycosis epidemic resulting from a novel pathogen undergoing a rapid and recent range expansion. The widespread occurrence of the same lineage in both healthy and declining populations suggests that the outcome of the disease is contingent on environmental factors and host resistance.

Collaboration


Dive into the Timothy Y. James's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolina Lambertini

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Kües

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Luís Felipe Toledo

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge