Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Timur V. Tscherbul is active.

Publication


Featured researches published by Timur V. Tscherbul.


Journal of Chemical Physics | 2005

Direct evaluation of the lifetime matrix by the hyperquantization algorithm: narrow resonances in the F + H2 reaction dynamics and their splitting for nonzero angular momentum.

Vincenzo Aquilanti; Simonetta Cavalli; Dario De Fazio; Andrea Simoni; Timur V. Tscherbul

We propose a new method for the direct and efficient evaluation of the Felix Smiths lifetime Q matrix for reactive scattering problems. Simultaneous propagation of the solution to a set of close-coupled equations together with its energy derivative allows one to avoid common problems pertinent to the finite-difference approach. The procedure is implemented on a reactive scattering code which employs the hyperquantization algorithm and the Johnson-Manolopoulos [J. Comput. Phys. 13, 455 (1973); J. Chem. Phys 85, 6425 (1986)] propagation to obtain the complete S matrix and scattering observables. As an application of the developed formalism, we focus on the total angular momentum dependence of narrow under-barrier resonances supported by van der Waals wells of the title reaction. Using our method, we fully characterize these metastable states obtaining their positions and lifetimes from Lorentzian fits to the largest eigenvalue of the lifetime matrix. Remarkable splittings of the resonances observed at J>0 are rationalized in terms of a hyperspherical model. In order to provide an insight on the decay mechanism, the Q-matrix eigenvectors are analyzed and the dominant channels populated during the decomposition of metastable states are determined. Possible relevance of the present results to reactive scattering experiments is discussed.


Physical Chemistry Chemical Physics | 2011

Cold heteromolecular dipolar collisions

Brian C. Sawyer; Benjamin Stuhl; Mark Yeo; Timur V. Tscherbul; Matthew T. Hummon; Yong Xia; Jacek Kłos; David Patterson; John M. Doyle; J. Ye

Cold molecules promise to reveal a rich set of novel collision dynamics in the low-energy regime. By combining for the first time the techniques of Stark deceleration, magnetic trapping, and cryogenic buffer gas cooling, we present the first experimental observation of cold collisions between two different species of state-selected neutral polar molecules. This has enabled an absolute measurement of the total trap loss cross sections between OH and ND(3) at a mean collision energy of 3.6 cm(-1) (5 K). Due to the dipolar interaction, the total cross section increases upon application of an external polarizing electric field. Cross sections computed from ab initio potential energy surfaces are in agreement with the measured value at zero external electric field. The theory presented here represents the first such analysis of collisions between a (2)Π radical and a closed-shell polyatomic molecule.


Physical Review Letters | 2009

Mechanism of Collisional Spin Relaxation in \(^3\)Σ Molecules

Wesley C. Campbell; Timur V. Tscherbul; Hsin-I Lu; Edem Tsikata; Roman V. Krems; John M. Doyle

We measure and theoretically determine the effect of molecular rotational splitting on Zeeman relaxation rates in collisions of cold 3Sigma molecules with helium atoms in a magnetic field. All four stable isotopomers of the imidogen (NH) molecule are magnetically trapped and studied in collisions with 3He and 4He. The 4He data support the predicted 1/B_{e};{2} dependence of the collision-induced Zeeman relaxation rate coefficient on the molecular rotational constant B_{e}. The measured 3He rate coefficients are much larger than the 4He coefficients, depend less strongly on B_{e}, and theoretical analysis indicates they are strongly affected by a shape resonance. The results demonstrate the influence of molecular structure on collisional energy transfer at low temperatures.


Journal of Chemical Physics | 2005

Interaction potentials of the RG–I anions, neutrals, and cations (RG=He, Ne, Ar)

Alexei A. Buchachenko; Timur V. Tscherbul; Jacek Kłos; M. M. Szczȩśniak; Grzegorz Chałasiński; R. Webb; Larry A. Viehland

Interaction potentials of the iodine atom, atomic cation, and anion with light rare-gas atoms from He to Ar are calculated within the unified ab initio approach using the unrestricted coupled-cluster with singles and doubles and perturbative treatment of triples correlation treatment, relativistic small-core pseudopotential, and an extended basis set. Ab initio points are fit to a flexible analytical function. The calculated potentials are compared with available literature data, assessed in the I(-)-and I+-ion mobility calculations and the Ar-I(-)-anion zero electron kinetic-energy spectra simulations, and analyzed using the correlation rules. The results indicate a high precision of the reported potentials.


New Journal of Physics | 2009

Magnetic field modification of ultracold molecule–molecule collisions

Timur V. Tscherbul; Yu. V. Suleimanov; V. Aquilanti; Roman V. Krems

We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focusses on the analysis of elastic scattering and spin relaxation in collisions of O2(3Sigma_g) molecules at cold (~0.1 K) and ultracold (~10^{-6} K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1 x 10^{-11} cm3/s. The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ~100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.


Journal of Chemical Physics | 2005

Collision-induced nonadiabatic transitions in the second-tier ion-pair states of iodine molecule: Experimental and theoretical study of the I2(f0g+) collisions with rare gas atoms

M.E. Akopyan; I.Yu. Novikova; S.A. Poretsky; A.M. Pravilov; Andrey G. Smolin; Timur V. Tscherbul; Alexei A. Buchachenko

Nonadiabatic transitions induced by collisions with He, Ar, Kr, and Xe atoms in the I(2) molecule excited to the f0(g)(+) second-tier ion-pair state are investigated by means of the optical-optical double resonance spectroscopy. Fluorescence spectra reveal that the transition to the F0(u)(+) state is a dominant nonradiative decay channel for f state in He, Ar, and Kr, whereas the reactive quenching is more efficient for collisions with Xe atom. Total rate constants and vibrational product state distributions for the f-->F electronic energy transfer are determined and analyzed in terms of energy gaps and Franck-Condon factors for the combining vibronic levels at initial vibrational excitations v(f)=8, 10, 14, and 17. Quantum scattering calculations are performed for collisions with He and Ar atoms, implementing a combination of the diatomics-in-molecule and long-range perturbation theories to evaluate diabatic PESs and coupling matrix elements. Calculated rate constants and vibrational product state distributions agree well with the measured ones, especially in case of Ar. Qualitative comparison is made with the previous results for the second-tier f0(g)(+)-->F0(u)(+) transition in collisions with I(2)(X) molecule and the first-tier E0(g)(+)-->D0(u)(+) transition induced by collisions with the rare gas atoms.


Physical Review Letters | 2011

Cold N+NH collisions in a magnetic trap

Matthew T. Hummon; Timur V. Tscherbul; Jacek Kłos; Hsin-I Lu; Edem Tsikata; Wesley C. Campbell; Alexander Dalgarno; John M. Doyle

We present an experimental and theoretical study of atom-molecule collisions in a mixture of cold, trapped N atoms and NH molecules at a temperature of ∼600  mK. We measure a small N+NH trap loss rate coefficient of k(loss)(N+NH)=9(5)(3)×10(-13)  cm(3) s(-1). Accurate quantum scattering calculations based on ab initio interaction potentials are in agreement with experiment and indicate the magnetic dipole interaction to be the dominant loss mechanism. Our theory further indicates the ratio of N+NH elastic-to-inelastic collisions remains large (>100) into the mK regime.


Physical Review Letters | 2011

Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap.

Timur V. Tscherbul; H.-G. Yu; Alexander Dalgarno

We present a rigorous theoretical study of low-temperature collisions of polyatomic molecular radicals with (1)S(0) atoms in the presence of an external magnetic field. Accurate quantum scattering calculations based on ab initio and scaled interaction potentials show that collision-induced spin relaxation of the prototypical organic molecule CH(2)(X(3)B(1)) (methylene) and nine other triatomic radicals in cold (3)He gas occurs at a slow rate, demonstrating that cryogenic buffer-gas cooling and magnetic trapping of these molecules is feasible with current technology. Our calculations further suggest that it may be possible to create ultracold gases of polyatomic molecules by sympathetic cooling with alkaline-earth atoms in a magnetic trap.


Journal of Chemical Physics | 2016

Quantum dynamics of incoherently driven V-type systems: Analytic solutions beyond the secular approximation

Amro Dodin; Timur V. Tscherbul; Paul Brumer

Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter ζ=12(γ1+γ2)/Δp, where γi are the radiative decay rates of the excited levels i = 1, 2, and Δp=Δ(2)+(1-p(2))γ1γ2 depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit (ζ ≫ 1), approach a long-lived quasi-steady state in the overdamped limit (ζ ≪ 1), and display an intermediate behavior at critical damping (ζ = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates |e1〉 and |e2〉 and their in-phase coherent superposition |ϕ+〉=1r1+r2(r1|e1〉+r2|e2〉), which is remarkably long-lived in the overdamped limit (where r1 and r2 are the incoherent pumping rates). Formation of this coherent superposition enhances the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when r1 = r2 and the transition dipole moments are fully aligned.


Physical Review A | 2011

Ultracold spin-polarized mixtures of {sup 2}{Sigma} molecules with S-state atoms: Collisional stability and implications for sympathetic cooling

Timur V. Tscherbul; Jacek Kłos; Alexei A. Buchachenko

The prospects of sympathetic cooling of polar molecules with magnetically cotrapped alkali-metal atoms are generally considered poor due to strongly anisotropic atom-molecule interactions leading to large spin relaxation rates. Using rigorous quantum scattering calculations based on ab initio interaction potentials, we show that inelastic spin relaxation in low-temperature collisions of CaH({sup 2}{Sigma}) molecules with Li and Mg atoms occurs at a slow rate despite the strongly anisotropic interactions. This unexpected result, which we rationalize using multichannel quantum-defect theory, opens up the possibility of sympathetic cooling of polar {sup 2}{Sigma} molecules with alkali-metal atoms in a magnetic trap and with alkaline-earth-metal atoms in an optical dipole trap.

Collaboration


Dive into the Timur V. Tscherbul's collaboration.

Top Co-Authors

Avatar

Roman V. Krems

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Dalgarno

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge