Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tin Kyaw is active.

Publication


Featured researches published by Tin Kyaw.


Circulation Research | 2011

B1a B Lymphocytes Are Atheroprotective by Secreting Natural IgM That Increases IgM Deposits and Reduces Necrotic Cores in Atherosclerotic Lesions

Tin Kyaw; Christopher Tay; Surendran Krishnamurthi; Peter Kanellakis; Alexander Agrotis; Peter G. Tipping; Alex Bobik; Ban-Hock Toh

Rationale: Aggravated atherosclerosis in B lymphocyte-deficient chimeric mice and reduced atherosclerosis after transfer of unfractionated spleen B lymphocytes into splenectomized mice have led to the widely held notion that B lymphocytes are atheroprotective. However, B lymphocytes can be pathogenic, because their depletion by anti-CD20 antibody ameliorated atherosclerosis, and transfer of B2 lymphocytes aggravated atherosclerosis. These observations raise the question of the identity of the atheroprotective B-lymphocyte population. Objective: The purpose of the study was to identify an atheroprotective B-lymphocyte subset and mechanisms by which they confer atheroprotection. Methods and Results: Splenectomy of apolipoprotein E–deficient mice selectively reduced peritoneal B1a lymphocytes, plasma IgM, and oxidized low-density lipoprotein IgM levels and lesion IgM deposits. These reductions were accompanied by increased oil red O–stained atherosclerotic lesions and increased necrotic cores, oxidized low-density lipoproteins, and apoptotic cells in lesions. Plasma lipids, body weight, collagen, and smooth muscle content were unaffected. Transfer of B1a lymphocytes into splenectomized mice increased peritoneal B1a lymphocytes; restored plasma IgM, oxidized low-density lipoprotein IgM levels, and lesion IgM deposits; and potently attenuated atherosclerotic lesions, with reduced lesion necrotic cores, oxidized low-density lipoprotein, and apoptotic cells. In contrast, transfer of B1a lymphocytes that cannot secrete IgM failed to protect against atherosclerosis development in splenectomized mice despite reconstitution in the peritoneum. Conclusions: B1a lymphocytes are an atheroprotective B-lymphocyte population. Our data suggest that natural IgM secreted by these lymphocytes offers protection by depositing IgM in atherosclerotic lesions, which reduces the necrotic cores of lesions.


Journal of Immunology | 2010

Conventional B2 B Cell Depletion Ameliorates whereas Its Adoptive Transfer Aggravates Atherosclerosis

Tin Kyaw; Christopher Tay; Abdul Waheed Khan; Vanessa Dumouchel; Anh Cao; Kelly To; Merilyn Kehry; Robert Dunn; Alex Agrotis; Peter G. Tipping; Alex Bobik; Ban-Hock Toh

Atherosclerosis is a chronic inflammatory arterial disease characterized by focal accumulation of lipid and inflammatory cells. It is the number one cause of deaths in the Western world because of its complications of heart attacks and strokes. Statins are effective in only approximately one third of patients, underscoring the urgent need for additional therapies. B cells that accumulate in atherosclerotic lesions and the aortic adventitia of humans and mice are considered to protect against atherosclerosis development. Unexpectedly, we found that selective B cell depletion in apolipoprotein E-deficient (ApoE−/−) mice using a well-characterized mAb to mouse CD20 reduced atherosclerosis development and progression without affecting the hyperlipidemia imposed by a high-fat diet. Adoptive transfer of 5 × 106 or 5 × 107 conventional B2 B cells but not 5 × 106 B1 B cells to a lymphocyte-deficient ApoE−/− Rag-2−/− common cytokine receptor γ-chain–deficient mouse that was fed a high-fat diet augmented atherosclerosis by 72%. Transfer of 5 × 106 B2 B cells to an ApoE−/− mouse deficient only in B cells aggravated atherosclerosis by >300%. Our findings provide compelling evidence for the hitherto unrecognized proatherogenic role of conventional B2 cells. The data indicate that B2 cells can potently promote atherosclerosis development entirely on their own in the total absence of all other lymphocyte populations. Additionally, these B2 cells can also significantly augment atherosclerosis development in the presence of T cells and all other lymphocyte populations. Our findings raise the prospect of B cell depletion as a therapeutic approach to inhibit atherosclerosis development and progression in humans.


PLOS ONE | 2012

Depletion of B2 but Not B1a B Cells in BAFF Receptor-Deficient ApoE−/− Mice Attenuates Atherosclerosis by Potently Ameliorating Arterial Inflammation

Tin Kyaw; Christopher Tay; Hamid Hosseini; Peter Kanellakis; Tahlia Gadowski; Fabeinne MacKay; Peter G. Tipping; Alex Bobik; Ban-Hock Toh

We have recently identified conventional B2 cells as atherogenic and B1a cells as atheroprotective in hypercholesterolemic ApoE−/− mice. Here, we examined the development of atherosclerosis in BAFF-R deficient ApoE−/− mice because B2 cells but not B1a cells are selectively depleted in BAFF-R deficient mice. We fed BAFF-R−/− ApoE−/− (BaffR.ApoE DKO) and BAFF-R+/+ApoE−/− (ApoE KO) mice a high fat diet (HFD) for 8-weeks. B2 cells were significantly reduced by 82%, 81%, 94%, 72% in blood, peritoneal fluid, spleen and peripheral lymph nodes respectively; while B1a cells and non-B lymphocytes were unaffected. Aortic atherosclerotic lesions assessed by oil red-O stained-lipid accumulation and CD68+ macrophage accumulation were decreased by 44% and 50% respectively. B cells were absent in atherosclerotic lesions of BaffR.ApoE DKO mice as were IgG1 and IgG2a immunoglobulins produced by B2 cells, despite low but measurable numbers of B2 cells and IgG1 and IgG2a immunoglobulin concentrations in plasma. Plasma IgM and IgM deposits in atherosclerotic lesions were also reduced. BAFF-R deficiency in ApoE−/− mice was also associated with a reduced expression of VCAM-1 and fewer macrophages, dendritic cells, CD4+ and CD8+ T cell infiltrates and PCNA+ cells in lesions. The expression of proinflammatory cytokines, TNF-α, IL1-β and proinflammatory chemokine MCP-1 was also reduced. Body weight and plasma cholesterols were unaffected in BaffR.ApoE DKO mice. Our data indicate that B2 cells are important contributors to the development of atherosclerosis and that targeting the BAFF-R to specifically reduce atherogenic B2 cell numbers while preserving atheroprotective B1a cell numbers may be a potential therapeutic strategy to reduce atherosclerosis by potently reducing arterial inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

High-Mobility Group Box Protein 1 Neutralization Reduces Development of Diet-Induced Atherosclerosis in Apolipoprotein E―Deficient Mice

Peter Kanellakis; Alex Agrotis; Tin Kyaw; Christine Koulis; Ingo Ahrens; Shuji Mori; Hideo Takahashi; Keyue Liu; Karlheinz Peter; Masahiro Nishibori; Alex Bobik

Objective—High-mobility group box protein 1 (HMGB1) is a DNA-binding protein and cytokine highly expressed in atherosclerotic lesions, but its pathophysiological role in atherosclerosis is unknown. We investigated its role in the development of atherosclerosis in ApoE−/− mice. Methods and Results—Apolipoprotein E–deficient (ApoE−/−) mice fed a high-fat diet were administered a monoclonal anti-HMGB1 neutralizing antibody, and the effects on lesion size, immune cell accumulation, and proinflammatory mediators were assessed using Oil Red O, immunohistochemistry, and real-time polymerase chain reaction. As with human atherosclerotic lesions, lesions in ApoE−/− mice expressed HMGB1. Treatment with the neutralizing antibody attenuated atherosclerosis by 55%. Macrophage accumulation was reduced by 43%, and vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1 expression was attenuated by 48% and 72%, respectively. CD11c+ dendritic cells were reduced by 65%, and the mature (CD83+) population was reduced by 60%. Treatment also reduced CD4+ cells by nearly 50%. mRNAs in lesions encoding tumor necrosis factor-&agr; and interleukin-1&bgr; tended to be reduced. Mechanistically, HMGB1 stimulated macrophage migration in vitro and in vivo; in vivo, it markedly augmented the accumulation of F4/80+Gr-1(Ly-6C)+ macrophages and also increased F4/80+CD11b+ macrophage numbers. Conclusion—HMGB1 exerts proatherogenic effects augmenting lesion development by stimulating macrophage migration, modulating proinflammatory mediators, and encouraging the accumulation of immune and smooth muscle cells.


Circulation | 2013

Cytotoxic and Proinflammatory CD8+ T Lymphocytes Promote Development of Vulnerable Atherosclerotic Plaques in ApoE-Deficient Mice

Tin Kyaw; Amy Winship; Christopher Tay; Peter Kanellakis; Hamid Hosseini; Anh Cao; Priscilla Li; Peter G. Tipping; Alex Bobik; Ban-Hock Toh

Background— Heart attacks and strokes, leading causes of deaths globally, arise from thrombotic occlusion of ruptured vulnerable atherosclerotic plaques characterized by abundant apoptosis, large necrotic cores derived from inefficient apoptotic cell clearance, thin fibrous caps, and focal inflammation. The genesis of apoptosis and necrotic cores in these vulnerable atherosclerotic plaques remains unknown. Cytotoxic CD8+ T lymphocytes represent up to 50% of leukocytes in advanced human plaques and dominate early immune responses in mouse lesions, yet their role in atherosclerosis also remains unresolved. Methods and Results— CD8+ T-lymphocyte depletion by CD8&agr; or CD8&bgr; monoclonal antibody in apolipoprotein E-deficient mice fed a high-fat diet ameliorated atherosclerosis by reducing lipid and macrophage accumulation, apoptosis, necrotic cores, and monocyte chemoattractant protein 1, interleukin 1&bgr;, interferon &ggr;, and vascular cell adhesion molecule 1. Transfer of CD8+ T cells into lymphocyte-deficient, apolipoprotein E-deficient mice partially reconstituted CD8+ T cells in lymphoid compartments and was associated with CD8+ T-cell infiltration in lesions, increased lipid and macrophage accumulation, apoptotic cells, necrotic cores, and interleukin 1&bgr; in atherosclerotic lesions. Transfer of CD8+ T cells deficient in perforin, granzyme B, or tumor necrosis factor &agr; but not interferon &ggr; failed to increase atherosclerotic lesions despite partial reconstitution in the lymphoid system and the presence in atherosclerotic lesions. Macrophages, smooth muscle cells, and endothelial cells were identified as apoptotic targets. Conclusions— We conclude that CD8+ T lymphocytes promote the development of vulnerable atherosclerotic plaques by perforin- and granzyme B–mediated apoptosis of macrophages, smooth muscle cells, and endothelial cells that, in turn, leads to necrotic core formation and further augments inflammation by tumor necrosis factor &agr; secretion.


Circulation | 2012

Cytokine Therapy With Interleukin-2/Anti–Interleukin-2 Monoclonal Antibody Complexes Expands CD4+CD25+Foxp3+ Regulatory T Cells and Attenuates Development and Progression of Atherosclerosis

Tam N Dinh; Tin Kyaw; Peter Kanellakis; Kelly To; Peter G. Tipping; Ban-Hock Toh; Alex Bobik; Alexander Agrotis

Background— CD4+CD25+Foxp3+ regulatory T cells (Tregs) attenuate atherosclerosis, but their therapeutic application by adoptive transfer is limited by the need for their expansion in vitro and limited purity. Recently, an interleukin (IL)-2/anti–IL-2 neutralizing monoclonal antibody (IL-2/anti–IL-2 mAb) complex has been shown to expand these Tregs. We examined the capacity of a modified IL-2/anti–IL-2 mAb treatment to expand Tregs and inhibit both the progression and development of developed atherosclerosis. Methods and Results— Six-week old apolipoprotein E–deficient mice fed a high-fat diet for 8 weeks were administered IL-2/anti–IL-2 mAb commencing 2 weeks after starting the diet. Tregs in the spleen, lymph node, and liver were selectively expanded without affecting CD4+, CD8+, or natural killer cells. Tregs were increased in lesions and lesion size reduced. CD4+ T-cells, macrophages, mature dendritic cells, proliferating cell nuclear antigen+ cells, and monocyte chemoattractant protein-1 and vascular cell adhesion molecule-1 were reduced. In anti-CD3–stimulated splenocytes, proliferation and secretion of Th1, Th2, and Th17 (IL-17) cytokines and IL-1&bgr; were reduced. To determine whether treatment attenuated progression of developed atherosclerosis, 6-week-old apolipoprotein E–deficient mice were fed a high-fat diet for 6 weeks, followed by IL-2/anti–IL-2 mAb treatment for 6 weeks while continuing the high-fat diet. Treatment also increased Tregs without affecting CD4+, CD8+, or natural killer cells, suppressed inflammation, and greatly attenuated progression of atherosclerosis. Conclusions— IL-2/anti–IL-2 mAb treatment in vivo attenuates atherosclerosis via selective Tregs expansion. The findings suggest that cytokine-based IL-2/anti–IL-2 mAb complex therapy could represent an attractive approach for treating atherosclerosis, because it markedly attenuates progression as well as development, by modulating its immunoinflammatory component.


PLOS ONE | 2013

BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE(-/-) mice.

Tin Kyaw; Peng Cui; Christopher Tay; Peter Kanellakis; Hamid Hosseini; Edgar Liu; Antonius Rolink; Peter G. Tipping; Alex Bobik; Ban-Hock Toh

Aims Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse. Methods and Results To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93− CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93− CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment. Conclusion Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases.


Clinical Reviews in Allergy & Immunology | 2012

Cutting Edge Issues in Autoimmune Gastritis

Ban-Hock Toh; James Chan; Tin Kyaw; Frank Alderuccio

Autoimmune gastritis is the outcome of a pathological CD4 T cell-mediated autoimmune response directed against the gastric H/K-ATPase. Silent initially, the gastric lesion becomes manifest in humans by the development of megaloblastic pernicious anemia arising from vitamin B12 deficiency. Cutting edge issues in this disease relate to its epidemiology, immunogenetics, a role for Helicobacter pylori as an infective trigger through molecular mimicry, its immunopathogenesis, associated organ-specific autoimmune diseases, laboratory diagnosis, and approaches to curative therapy.


Hypertension | 2015

Obligatory Role for B Cells in the Development of Angiotensin II–Dependent Hypertension

Christopher T Chan; Christopher G. Sobey; Maggie Lieu; Dorota Ferens; Michelle M. Kett; Henry Diep; Helena Hyun Ah Kim; Shalini M Krishnan; Caitlin Lewis; Ekaterina Salimova; Peter G. Tipping; Antony Vinh; Chrishan S. Samuel; Karlheinz Peter; Tomasz J. Guzik; Tin Kyaw; Ban-Hock Toh; Alex Bobik; Grant R. Drummond

Clinical hypertension is associated with raised serum IgG antibodies. However, whether antibodies are causative agents in hypertension remains unknown. We investigated whether hypertension in mice is associated with B-cell activation and IgG production and moreover whether B-cell/IgG deficiency affords protection against hypertension and vascular remodeling. Angiotensin II (Ang II) infusion (0.7 mg/kg per day; 28 days) was associated with (1) a 25% increase in the proportion of splenic B cells expressing the activation marker CD86, (2) an 80% increase in splenic plasma cell numbers, (3) a 500% increase in circulating IgG, and (4) marked IgG accumulation in the aortic adventitia. In B-cell–activating factor receptor–deficient (BAFF-R−/−) mice, which lack mature B cells, there was no evidence of Ang II–induced increases in serum IgG. Furthermore, the hypertensive response to Ang II was attenuated in BAFF-R−/− (&Dgr;30±4 mm Hg) relative to wild-type (&Dgr;41±5 mm Hg) mice, and this response was rescued by B-cell transfer. BAFF-R−/− mice displayed reduced IgG accumulation in the aorta, which was associated with 80% fewer aortic macrophages and a 70% reduction in transforming growth factor-&bgr; expression. BAFF-R−/− mice were also protected from Ang II–induced collagen deposition and aortic stiffening (assessed by pulse wave velocity analysis). Finally, like BAFF-R deficiency, pharmacological depletion of B cells with an anti-CD20 antibody attenuated Ang II–induced hypertension by ≈35%. Hence, these studies demonstrate that B cells/IgGs are crucial for the development of Ang II–induced hypertension and vessel remodeling in mice. Thus, B-cell–targeted therapies—currently used for autoimmune diseases—may hold promise as future treatments for hypertension.


Current Opinion in Lipidology | 2011

Current understanding of the role of B cell subsets and intimal and adventitial B cells in atherosclerosis

Tin Kyaw; Peter G. Tipping; Ban-Hock Toh; Alex Bobik

Purpose of review Inflammation, in addition to high cholesterol is a major factor contributing to atherosclerosis-associated adverse cardiovascular events. Thus, there is a pressing need for additional therapeutic strategies to reduce inflammation, by targeting immune cells and cytokines. Here we review B cell subsets and adventitial and intimal B cells in atherosclerosis development and discuss potential B cell-targeted anti-inflammatory therapies for atherosclerosis. Recent findings B cell subsets can have opposing proatherogenic and atheroprotective roles in atherosclerosis. CD-20-targeted B cell depletion has been shown to decrease murine atherosclerotic lesions. The accumulation of intimal and adventitial B cells associated with atherosclerotic lesions is consistent with their participation in local inflammatory responses. As B2 B cells are proatherogenic, blocking its survival factor B cell activating factor may selectively delete this proatherogenic subset. Summary Both intimal and adventitial B cells appear important in atherosclerosis. B2 B cells are proatherogenic and other subsets such as regulatory B cells are antiatherogenic. Future B cell-targeted therapy for atherosclerosis should be customized to selectively deplete damaging B2 B cells while sparing or expanding protective B cell subsets.

Collaboration


Dive into the Tin Kyaw's collaboration.

Top Co-Authors

Avatar

Alex Bobik

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Kanellakis

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge