Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Graves is active.

Publication


Featured researches published by Tina Graves.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


Nature | 2003

The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes

Helen Skaletsky; Tomoko Kuroda-Kawaguchi; Patrick Minx; Holland S. Cordum; LaDeana W. Hillier; Laura G. Brown; Sjoerd Repping; Johar Ali; Tamberlyn Bieri; Asif T. Chinwalla; Andrew Delehaunty; Kim D. Delehaunty; Hui Du; Ginger Fewell; Lucinda Fulton; Robert S. Fulton; Tina Graves; Shunfang Hou; Philip Latrielle; Shawn Leonard; Elaine R. Mardis; Rachel Maupin; John D. McPherson; Tracie L. Miner; William E. Nash; Christine Nguyen; Philip Ozersky; Kymberlie H. Pepin; Susan Rock; Tracy Rohlfing

The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosomes length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.


Nature | 2008

Mapping and sequencing of structural variation from eight human genomes

Jeffrey M. Kidd; Gregory M. Cooper; William F. Donahue; Hillary S. Hayden; Nick Sampas; Tina Graves; Nancy F. Hansen; Brian Teague; Can Alkan; Francesca Antonacci; Eric Haugen; Troy Zerr; N. Alice Yamada; Peter Tsang; Tera L. Newman; Eray Tuzun; Ze Cheng; Heather M. Ebling; Nadeem Tusneem; Robert David; Will Gillett; Karen A. Phelps; Molly Weaver; David Saranga; Adrianne D. Brand; Wei Tao; Erik Gustafson; Kevin McKernan; Lin Chen; Maika Malig

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Science | 2010

The Genome of the Western Clawed Frog Xenopus tropicalis

Uffe Hellsten; Richard M. Harland; Michael J. Gilchrist; David A. Hendrix; Jerzy Jurka; Vladimir V. Kapitonov; Ivan Ovcharenko; Nicholas H. Putnam; Shengqiang Shu; Leila Taher; Ira L. Blitz; Bruce Blumberg; Darwin S. Dichmann; Inna Dubchak; Enrique Amaya; John C. Detter; Russell B. Fletcher; Daniela S. Gerhard; David L. Goodstein; Tina Graves; Igor V. Grigoriev; Jane Grimwood; Takeshi Kawashima; Erika Lindquist; Susan Lucas; Paul E. Mead; Therese Mitros; Hajime Ogino; Yuko Ohta; Alexander Poliakov

Frog Genome The African clawed frog Xenopus tropicalis is the first amphibian to have its genome sequenced. Hellsten et al. (p. 633, see the cover) present an analysis of a draft assembly of the genome. The genome of the frog, which is an important model system for developmental biology, encodes over 20,000 protein-coding genes, of which more than 1700 genes have identified human disease associations. Detailed comparison of the content of protein-coding genes with other tetrapods—human and chicken—reveals extensive shared synteny, occasionally spanning entire chromosomes. Assembly, annotation, and analysis of the frog genome compares gene content and synteny with the human and chicken genomes. The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.


Nature | 2012

Insights into hominid evolution from the gorilla genome sequence.

Aylwyn Scally; Julien Y. Dutheil; LaDeana W. Hillier; Gregory Jordan; Ian Goodhead; Javier Herrero; Asger Hobolth; Tuuli Lappalainen; Thomas Mailund; Tomas Marques-Bonet; Shane McCarthy; Stephen H. Montgomery; Petra C. Schwalie; Y. Amy Tang; Michelle C. Ward; Yali Xue; Bryndis Yngvadottir; Can Alkan; Lars Nørvang Andersen; Qasim Ayub; Edward V. Ball; Kathryn Beal; Brenda J. Bradley; Yuan Chen; Chris Clee; Stephen Fitzgerald; Tina Graves; Yong Gu; Paul Heath; Andreas Heger

Gorillas are humans’ closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human–chimpanzee and human–chimpanzee–gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Science | 2009

Genome Project Standards in a New Era of Sequencing

Patrick Chain; Darren Grafham; Robert S. Fulton; Michael Fitzgerald; Jessica B. Hostetler; Donna M. Muzny; J. Ali; Bruce W. Birren; David Bruce; Christian Buhay; James R. Cole; Yan Ding; Shannon Dugan; Dawn Field; George M Garrity; Richard A. Gibbs; Tina Graves; Cliff Han; Scott H. Harrison; Sarah K. Highlander; Philip Hugenholtz; H. M. Khouri; Chinnappa D. Kodira; Eugene Kolker; Nikos C. Kyrpides; D. Lang; Alla Lapidus; S. A. Malfatti; Victor Markowitz; T. Metha

More detailed sequence standards that keep up with revolutionary sequencing technologies will aid the research community in evaluating data. For over a decade, genome sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole-genome sequencing that requires reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker “draft”; however, these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and has contributed to many wasted hours. Exponential leaps in raw sequencing capability and greatly reduced prices have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The result is an ever-widening gap between drafted and finished genomes that only promises to continue (see the figure, page 236); hence, there is an urgent need to distinguish good from poor data sets.


Nature | 2005

A genome-wide comparison of recent chimpanzee and human segmental duplications

Ze Cheng; Mario Ventura; Xinwei She; Philipp Khaitovich; Tina Graves; Kazutoyo Osoegawa; Deanna M. Church; Pieter J. deJong; Richard Wilson; Svante Pääbo; Mariano Rocchi; Evan E. Eichler

We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4–5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).


PLOS Biology | 2009

Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

Deanna M. Church; Leo Goodstadt; LaDeana W. Hillier; Michael C. Zody; Steve Goldstein; Xinwe She; Richa Agarwala; Joshua L. Cherry; Michael DiCuccio; Wratko Hlavina; Yuri Kapustin; Peter Meric; Donna Maglott; Zoë Birtle; Ana C. Marques; Tina Graves; Shiguo Zhou; Brian Teague; Konstantinos Potamousis; Chris Churas; Michael Place; Jill Herschleb; Ron Runnheim; Dan Forrest; James M. Amos-Landgraf; David C. Schwartz; Ze Cheng; Kerstin Lindblad-Toh; Evan E. Eichler; Chris P. Ponting

A finished clone-based assembly of the mouse genome reveals extensive recent sequence duplication during recent evolution and rodent-specific expansion of certain gene families. Newly assembled duplications contain protein-coding genes that are mostly involved in reproductive function.


Nature | 2010

Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content

Jennifer F. Hughes; Helen Skaletsky; Tina Graves; Saskia K.M. van Daalen; Patrick Minx; Robert S. Fulton; Sean McGrath; Devin P. Locke; Cynthia Friedman; Barbara J. Trask; Elaine R. Mardis; Wesley C. Warren; Sjoerd Repping; Steve Rozen; Richard Wilson; David C. Page

The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.

Collaboration


Dive into the Tina Graves's collaboration.

Top Co-Authors

Avatar

Richard Wilson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wesley C. Warren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Helen Skaletsky

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Colin Kremitzki

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David C. Page

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patrick Minx

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert S. Fulton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

LaDeana W. Hillier

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge