Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Holm is active.

Publication


Featured researches published by Tina Holm.


Current Pharmaceutical Design | 2005

Cell-Penetrating Peptides: Mechanisms and Applications

Samir El-Andaloussi; Tina Holm; Ülo Langel

A major obstacle in the development of new therapeutic agents is the low bioavailability of hydrophilic substances. Drugs that bind to intracellular targets must penetrate the lipid bilayer surrounding the cell in order to exert their effect. A relatively new research area that addresses this problem by introducing novel transport peptides that facilitate the cellular penetration of potential drugs has emerged. These peptides predominantly have a positive net charge and/or an amphipathic nature, but can otherwise have very different characteristics. This group of peptides, although sometimes called protein transduction domains (PTDs), is here referred to as cell-penetrating peptides (CPPs). For many years it was believed that these peptides were internalized into cells via a non-endocytotic, receptor-independent pathway. However, recent publications have suggested that an endocytotic pathway cannot be ruled out, and that earlier results might be based on artifacts associated with fixation of cells and membrane association of peptides. Although the mechanism of cellular uptake remains unclear, there is an increasing amount of reports on biological effects of CPPs and their cargos. Thus, CPPs are an attractive pharmaceutical and biochemical tool that needs more attention. This review will discuss some recent results in this research field with focus on the cell-penetrating peptide transportan.


Bioconjugate Chemistry | 2008

Distinct uptake routes of cell-penetrating peptide conjugates.

Per Lundin; H. Johansson; Peter Guterstam; Tina Holm; Mats Hansen; Ülo Langel; Samir El Andaloussi

Cell-penetrating peptides (CPPs) are a growing family of peptides that have opened a new avenue in drug delivery, allowing various hydrophilic macromolecules to enter cells. In accordance with most other cationic delivery vectors, CPPs seem to rely mostly on endocytosis for internalization. However, due to conflicting results the exact endocytic pathways for CPP uptake have not yet been resolved. Here, we evaluated the ability of seven CPPs, with different chemical properties, to convey peptide nucleic acids (PNAs) inside cells. Assays based on both splice correction, generating biologically active read-out, and on traditional fluorescence measurements were utilized. The same assays were employed to assess different endocytic pathways and the dependence on extracellular heparan sulfates for internalization. Both highly cationic CPPs (M918, penetratin, and Tat) and amphipathic peptides (transportan, TP10, MAP, and pVEC) were investigated in this study. Conjugate uptake relied on endocytosis for all seven peptides but splice-correcting activity varied greatly for the investigated CPPs. The exact endocytic internalization routes were evaluated through the use of well-known endocytosis inhibitors and tracers. In summary, the different chemical properties of CPPs have little correlation with their ability to efficiently deliver splice-correcting PNA. However, conjugates of polycationic and amphipathic peptides appear to utilize different internalization routes.


Molecular Therapy | 2007

A Novel Cell-penetrating Peptide, M918, for Efficient Delivery of Proteins and Peptide Nucleic Acids

Samir El-Andaloussi; H. Johansson; Tina Holm; Ülo Langel

Cell-penetrating peptides (CPPs) have attracted increasing attention in the past decade as a result of their high potential to convey various, otherwise impermeable, bioactive agents across cellular plasma membranes. Albeit different CPPs have proven potent in delivery of different cargoes, there is generally a correlation between high efficacy and cytotoxicity for these peptides. Hence, it is of great importance to find new, non-toxic CPPs with more widespread delivery properties. We present a novel CPP, M918, that efficiently translocates various cells in a non-toxic fashion. In line with most other CPPs, the peptide is internalized mainly via endocytosis, and in particular macropinocytosis, but independent of glycosaminoglycans on the cell surface. In addition, in a splice correction assay using antisense peptide nucleic acid (PNA) conjugated via a disulphide bridge to M918 (M918-PNA), we observed a dose-dependent increase in correct splicing, exceeding the effect of other CPPs. Our data demonstrate that M918 is a novel CPP that can be used to translocate different cargoes inside various cells efficiently.


Mbio | 2013

Genomic Insights into the Atopic Eczema-Associated Skin Commensal Yeast Malassezia sympodialis

Anastasia Gioti; Björn Nystedt; Wenjun Li; Jun Xu; Anna Andersson; Anna F. Averette; Karin Münch; Xuying Wang; Catharine Kappauf; Joanne M. Kingsbury; Bart Kraak; Louise A. Walker; H. Johansson; Tina Holm; Janne Lehtiö; Jason E. Stajich; Piotr A. Mieczkowski; Regine Kahmann; John C. Kennell; Maria E. Cardenas; Joakim Lundeberg; Charles Winston Saunders; Teun Boekhout; Thomas L. Dawson; Carol A. Munro; Piet W. J. de Groot; Geraldine Butler; Joseph Heitman; Annika Scheynius

ABSTRACT Malassezia commensal yeasts are associated with a number of skin disorders, such as atopic eczema/dermatitis and dandruff, and they also can cause systemic infections. Here we describe the 7.67-Mbp genome of Malassezia sympodialis, a species associated with atopic eczema, and contrast its genome repertoire with that of Malassezia globosa, associated with dandruff, as well as those of other closely related fungi. Ninety percent of the predicted M. sympodialis protein coding genes were experimentally verified by mass spectrometry at the protein level. We identified a relatively limited number of genes related to lipid biosynthesis, and both species lack the fatty acid synthase gene, in line with the known requirement of these yeasts to assimilate lipids from the host. Malassezia species do not appear to have many cell wall-localized glycosylphosphatidylinositol (GPI) proteins and lack other cell wall proteins previously identified in other fungi. This is surprising given that in other fungi these proteins have been shown to mediate interactions (e.g., adhesion and biofilm formation) with the host. The genome revealed a complex evolutionary history for an allergen of unknown function, Mala s 7, shown to be encoded by a member of an amplified gene family of secreted proteins. Based on genetic and biochemical studies with the basidiomycete human fungal pathogen Cryptococcus neoformans, we characterized the allergen Mala s 6 as the cytoplasmic cyclophilin A. We further present evidence that M. sympodialis may have the capacity to undergo sexual reproduction and present a model for a pseudobipolar mating system that allows limited recombination between two linked MAT loci. IMPORTANCE Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets. Malassezia commensal yeasts are associated with a number of skin disorders. The previously published genome of M. globosa provided some of the first insights into Malassezia biology and its involvement in dandruff. Here, we present the genome of M. sympodialis, frequently isolated from patients with atopic eczema and healthy individuals. We combined comparative genomics with sequencing and functional characterization of specific genes in a population of clinical isolates and in closely related model systems. Our analyses provide insights into the evolution of allergens related to atopic eczema and the evolutionary trajectory of the machinery for sexual reproduction and meiosis. We hypothesize that M. sympodialis may undergo sexual reproduction, which has important implications for the understanding of the life cycle and virulence potential of this medically important yeast. Our findings provide a foundation for the development of genetic and genomic tools to elucidate host-microbe interactions that occur on the skin and to identify potential therapeutic targets.


Molecular Therapy | 2008

Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein.

H. Johansson; Samir El-Andaloussi; Tina Holm; Maarja Mäe; Jaak Jänes; Toivo Maimets; Ülo Langel

The tumor suppressor p14ARF is widely deregulated in many types of cancers and is believed to function as a failsafe mechanism, inhibiting proliferation and inducing apoptosis as cellular response to a high oncogene load. We have found that a 22-amino-acid-long peptide derived from the N-terminal part of p14ARF, denoted ARF(1-22), which has previously been shown to mimic the function of p14ARF, has cell-penetrating properties. This peptide is internalized to the same extent as the cell-penetrating peptide (CPP) TP10 and dose-dependently decreases proliferation in MCF-7 and MDA MB 231 cells. Uptake of the ARF(1-22) peptide is associated with low membrane disturbance, measured by deoxyglucose and lactate dehydrogenase (LDH) leakage, as compared to its scrambled peptide. Also, flow cytometric analysis of annexin V/propidium iodide (PI) binding and Hoechst staining of nuclei suggest that ARF(1-22) induces apoptosis, whereas scrambled or inverted peptide sequences have no effect. The ARF(1-22) peptide mainly translocates cells through endocytosis, and is found intact inside cells for at least 3 hours. To our knowledge, this is the first time a CPP having pro-apoptopic activity has been designed from a protein.


Nature Protocols | 2006

Studying the uptake of cell-penetrating peptides

Tina Holm; H. Johansson; Pontus Lundberg; Margus Pooga; Maria Lindgren; Ülo Langel

More than a decade ago, it was discovered that cationic peptides could traverse the cellular plasma membrane without specific transporter proteins or membrane damage. Subsequently, it was found that these peptides, known as cell-penetrating peptides (CPPs), were also capable of delivering cargos into cells, hence the great potential of these vectors was acknowledged. Today, many different research groups are working with CPPs, which necessitates efforts to develop unified assays enabling the comparison of data. Here we contribute three protocols for evaluation of CPPs which, if used in conjunction, provide complementary data about the amount and mechanism of uptake (fluorometric analysis and confocal microscopy, respectively), as well as the extent of degradation (HPLC analysis of cell lysates). All three protocols are based on the use of fluorescently labeled peptides and can be performed on the same workday.


Chemistry & Biology | 2010

Characterization of bioactive cell penetrating peptides from human cytochrome c: protein mimicry and the development of a novel apoptogenic agent.

Sarah Jones; Tina Holm; Imre Mäger; Ülo Langel; John Howl

Cell penetrating peptides (CPPs) with intrinsic biological activities offer a novel strategy for the modulation of intracellular events. QSAR analysis identified CPPs within human cytochrome c. Two such sequences, Cyt c(77-101) and Cyt c(86-101), induced tumor cell apoptosis, thus mimicking the role of Cyt c as a key regulator of programmed cell death. Quantitative analyses confirmed that Cyt c(77-101) is an extremely efficient CPP. Thus, Cyt c(77-101) was selected for modification to incorporate target-specific peptidyl motifs. Chimeric N-terminal extension with a target mimetic of FG nucleoporins significantly enhanced the apoptogenic potency of Cyt c(77-101) to a concentration readily achievable in vivo. Moreover, this construct, Nup153-Cyt c, facilitates the dramatic redistribution of nuclear pore complex proteins and thus propounds the nuclear pore complex as a novel target for the therapeutic induction of apoptosis.


FEBS Letters | 2005

Uptake of cell-penetrating peptides in yeasts

Tina Holm; Semharai Netzereab; Mats Hansen; Ülo Langel; Mattias Hällbrink

The uptake of different cell‐penetrating peptides (CPPs) in two yeast species, Saccharomyces cerevisiae and Candida albicans, was studied using fluorescence HPLC‐analyses of cell content. Comparison of the ability of penetratin, pVEC and (KFF)3K to traverse the yeast cell envelope shows that the cellular uptake of the peptides varies widely. Moreover, the intracellular degradation of the CPPs studied varies from complete stability to complete degradation. We show that intracellular degradation into membrane impermeable products can significantly contribute to the fluorescence signal. pVEC displayed highest internalizing capacity, and considering its stability in both yeast species, it is an attractive candidate for further studies.


The EMBO Journal | 2012

Impairment of GABAB receptor dimer by endogenous 14‐3‐3ζ in chronic pain conditions

Sophie Laffray; Rabia Bouali-Benazzouz; Marie-Amélie Papon; Alexandre Favereaux; Yang Jiang; Tina Holm; Corentin Spriet; Pascal Desbarats; Pascal Fossat; Yves Le Feuvre; Marion Decossas; Laurent Héliot; Ülo Langel; Frédéric Nagy; Marc Landry

In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein‐coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de‐dimerization in pathological conditions. We show here that 14‐3‐3ζ, a GABAB1‐binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14‐3‐3ζ is overexpressed and weakens GABAB inhibition. Using anti‐14‐3‐3ζ siRNA or competing peptides disrupts 14‐3‐3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti‐nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization.


Journal of Biological Chemistry | 2008

c-Jun supports ribosomal RNA processing and nucleolar localization of RNA helicase DDX21.

Tim H. Holmström; Antoine Mialon; Marko J. Kallio; Yvonne Nymalm; Leni Mannermaa; Tina Holm; H. Johansson; Elizabeth J. Black; David A. Gillespie; Tiina A. Salminen; Ülo Langel; Benigno C. Valdez; Jukka Westermarck

The molecular mechanisms by which the AP-1 transcription factor c-Jun exerts its biological functions are not clearly understood. In addition to its well established role in transcriptional regulation of gene expression, several reports have suggested that c-Jun may also regulate cell behavior by non-transcriptional mechanisms. Here, we report that small interfering RNA-mediated depletion of c-Jun from mammalian cells results in inhibition of 28 S and 18 S rRNA accumulation. Moreover, we show that c-Jun depletion results in partial translocation of RNA helicase DDX21, implicated in rRNA processing, from the nucleolus to the nucleoplasm. We demonstrate that DDX21 translocation is rescued by exogenous c-Jun expression and that c-Jun depletion inhibits rRNA binding of DDX21. Furthermore, the direct interaction between c-Jun and DDX21 regulates nucleolar localization of DDX21. These results demonstrate that in addition to its transcriptional effects, c-Jun regulates rRNA processing and nucleolar compartmentalization of the rRNA processing protein DDX21. Thus, our results demonstrate a nucleolar mechanism through which c-Jun can regulate cell behavior. Moreover, these results suggest that the phenotypes observed previously in c-Jun-depleted mouse models and cell lines could be partly due to the effects of c-Jun on rRNA processing.

Collaboration


Dive into the Tina Holm's collaboration.

Top Co-Authors

Avatar

Ülo Langel

University Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge