Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Jaskoll is active.

Publication


Featured researches published by Tina Jaskoll.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 1999

Submandibular gland morphogenesis: Stage‐specific expression of TGF‐α/EGF, IGF, TGF‐β, TNF, and IL‐6 signal transduction in normal embryonic mice and the phenotypic effects of TGF‐β2, TGF‐β3, and EGF‐r null mutations

Tina Jaskoll; Michael Melnick

Branching morphogenesis of the mouse submandibular gland (SMG) is dependent on cell‐cell conversations between and within epithelium and mesenchyme. Such conversations are typically mediated in other branching organs (lung, mammary glands, etc.) by hormones, growth factors, cytokines, and the like in such a way as to translate endocrine, autocrine, and paracrine signals into specific gene responses regulating cell division, apoptosis, and histodifferentiation. We report here the protein expression in embryonic SMGs of four signal transduction pathways: TGF‐α/EGF/EGF‐R; IGF‐II/IGF‐IR/IGF‐IIR; TGF‐βs and cognate receptors; TNF, IL‐6, and cognate receptors. Their in vivo spatiotemporal expression is correlated with specific stages of progressive SMG development and particular patterns of cell proliferation, apoptosis, and mucin expression. Functional necessity regarding several of these pathways was assessed in mice with relevant null mutations (TGF‐β2, TGF‐β3, EGF‐R). Among many observations, the following seem of particular importance: (1) TGF‐α and EGF‐R, but not EGF, are found in the Initial and Pseudoglandular Stages of SMG development; (2) ductal and presumptive acini lumena formation was associated with apoptosis and TNF/TNF‐R1 signalling; (3) TGF‐β2 and TGF‐β3 null mice have normal SMG phenotypes, suggesting the presence of other pathways of mitostasis; (4) EGF‐R null mice displayed an abnormal SMG phenotype consisting of decreased branching. These and other findings provide insight into the design of future functional studies. Anat Rec 256:252–268, 1999.


Cells Tissues Organs | 2002

Embryonic Submandibular Gland Morphogenesis: Stage-Specific Protein Localization of FGFs, BMPs, Pax6 and Pax9 in Normal Mice and Abnormal SMG Phenotypes in FgfR2-IIIc+/Δ, BMP7–/– and Pax6–/–Mice

Tina Jaskoll; Yan Min Zhou; Yang Chai; Helen P. Makarenkova; J. Martin Collinson; John B. West; Mohammad K. Hajihosseini; Jina Lee; Michael Melnick

Embryonic submandibular salivary gland (SMG) initiation and branching morphogenesis are dependent on cell-cell communications between and within epithelium and mesenchyme. Such communications are typically mediated in other organs (teeth, lung, lacrimal glands) by growth factors in such a way as to translate autocrine, juxtacrine and paracrine signals into specific gene responses regulating cell division and histodifferentiation. Using Wnt1-Cre/R26R transgenic mice, we demonstrate that embryonic SMG mesenchyme is derived exclusively from cranial neural crest. This origin contrasts to that known for tooth mesenchyme, previously shown to be derived from both neural crest and nonneural crest cells. Thus, although both SMGs and teeth are mandibular derivatives, we can expect overlap and differences in the details of their early inductive interactions. In addition, since embryonic SMG branching morphogenesis is analogous to that seen in other branching organs, we also expect similarities of expression regarding those molecules known to be ubiquitous regulators of morphogenesis. In this study, we performed an analysis of the distribution of specific fibroblast growth factors (FGFs), FGF receptors, bone morphogenetic proteins (BMPs) and Pax transcription factors, previously shown to be important for tooth development and/or branching morphogenesis, from the time of initiation of embryonic SMG development until early branching morphogenesis. In addition, we report abnormal SMG phenotypes in FgfR2- IIIc+/Δ, BMP7–/–and Pax6–/– mice. Our results, in comparison with functional studies in other systems, suggest that FGF-2/FGFR-1, FGF-8/FGFR-2(IIIc) and FGF-10/FGFR-2(IIIb) signaling have different paracrine and juxtacrine functions during SMG initial bud formation and branching. Finally, our observations of abnormal SMGs in BMP7–/– and Pax6–/–indicate that both BMP7 and Pax6 play important roles during embryonic SMG branching morphogenesis.


BMC Developmental Biology | 2005

FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis

Tina Jaskoll; George Abichaker; Daniel Witcher; Frederic G. Sala; Saverio Bellusci; Mohammad K. Hajihosseini; Michael Melnick

BackgroundAnalyses of Fgf10 and Fgfr2b mutant mice, as well as human studies, suggest that FGF10/FGFR2b signaling may play an essential, nonredundant role during embryonic SMG development. To address this question, we have analyzed the SMG phenotype in Fgf10 and Fgfr2b heterozygous and null mutant mice. In addition, although previous studies suggest that the FGF10/FGFR2b and FGF8/FGFR2c signaling pathways are functionally interrelated, little is known about the functional relationship between these two pathways during SMG development. We have designed in vivo and in vitro experiments to address this question.ResultsWe analyzed Fgf10 and Fgfr2b heterozygous mutant and null mice and demonstrate dose-dependent SMG phenotypic differences. Hypoplastic SMGs are seen in Fgf10 and Fgfr2b heterozygotes whereas SMG aplasia is seen in Fgf10 and Fgfr2b null embryos. Complementary in vitro studies further indicate that FGF10/FGFR2b signaling regulates SMG epithelial branching and cell proliferation. To delineate the functional relationship between the FGF10/FGFR2b and FGF8/FGFR2c pathways, we compared the SMG phenotype in Fgfr2c+/Δ/Fgf10+/- double heterozygous mice to that seen in wildtype, Fgf10+/- (Fgfr2c+/+/Fgf10+/-) and Fgfr2c+/Δ(Fgfr2c+/Δ/Fgf10+/+) single heterozygous mutant littermates and demonstrate genotype-specific SMG phenotypes. In addition, exogenous FGF8 was able to rescue the abnormal SMG phenotype associated with abrogated FGFR2b signaling in vitro and restore branching to normal levels.ConclusionOur data indicates that FGF10/FGFR2b signaling is essential for the SMG epithelial branching and histodifferentiation, but not earliest initial bud formation. The functional presence of other endogenous signaling pathways could not prevent complete death of embryonic SMG cells in Fgf10 and Fgfr2b null mice. Though we were able to rescue the abnormal phenotype associated with reduced in vitro FGF10/FGFR2b signaling with exogenous FGF8 supplementation, our results indicate that the FGF10/FGFR2b and FGF8/FGFR2c are nonredundant signaling pathways essential for in vivo embryonic SMG development. What remains to be determined is the in vivo functional relationship between the FGF10/FGFR2b signal transduction pathway and other key signaling pathways, and how these pathways are integrated during embryonic SMG development to compose the functional epigenome.


Developmental Dynamics | 2004

Sonic Hedgehog Signaling Plays an Essential Role During Embryonic Salivary Gland Epithelial Branching Morphogenesis

Tina Jaskoll; T. Leo; Daniel Witcher; Mattias Ormestad; Jeanette Astorga; Pablo Bringas; Peter Carlsson; Michael Melnick

Gene targeting studies indicate that sonic hedgehog (Shh) signaling plays an essential role during craniofacial development. Because numerous mandibular derivatives (e.g., teeth, tongue, Meckels cartilage) are absent in Shh null mice and the embryonic submandibular salivary gland (SMG) develops from the mandibular arch, we postulated that Shh signaling is important for embryonic SMG development. To address this question, we first determined the spatiotemporal distribution of Shh; two transmembrane proteins, patched 1 (Ptc) and Smoothened (Smo), which act as a negative or a positive regulator of the Shh signal, respectively; and the Gli 3 transcription factor, which is downstream of the Shh signal. The epithelial localization of Shh, Ptc, Smo, and Gli 3 suggests that Shh signaling may act within the epithelium in a juxtacrine manner. The SMG phenotype in our embryonic day (E) 18.5 Shh null mice can be characterized as “paedomorphic,” that is, it fails to progress to ontogenic stages beyond the Early Pseudoglandular (∼E14). In a complementary set of experiments, we used organ culture to evaluate the effect of enhanced or abrogated Shh signaling on embryonic SMG development in vitro. Paired E13 (Late Initial Bud stage) or E14 (Pseudoglandular stage) SMGs were cultured in the presence or absence of exogenous Shh peptide supplementation; Shh‐supplemented explants exhibit a significant stage‐dependent increase in branching morphogenesis compared with control explants. Furthermore, by using cyclopamine, a steroidal alkaloid that specifically disrupts the Shh pathway, to abrogate endogenous Shh signaling in vitro, we found a significant decrease in branching in cyclopamine‐treated explants compared with controls, as well as a significant decrease in epithelial cell proliferation. Our results indicate that Shh signaling plays an essential role during embryonic SMG branching morphogenesis. Exogenous FGF8 peptide supplementation in vitro rescues the abnormal SMG phenotype seen in cyclopamine‐treated explants, demonstrating that overexpression of a parallel, but related, downstream signaling pathway can compensate for diminished Shh signaling and restore embryonic SMG branching morphogenesis. Developmental Dynamics 229:722–732, 2004.


Mechanisms of Development | 1988

Embryonic mouse lung morphogenesis and type II cytodifferentiation in serumless, chemically defined medium using prolonged in vitro cultures.

Tina Jaskoll; Grace Don‐Wheeler; Randall Johnson; Harold C. Slavkin

The timing, position and mechanism(s) for determining type II cytodifferentiation during mammalian lung development are not known. To approach this problem, we have cultured Theiler stage 16 embryonic B10.A strain mouse lung primordia (12-days gestation, E12) in serumless, chemically defined medium in the presence or absence of dexamethasone (DEX) for periods up to 27 days in vitro. Morphogenesis and cytodifferentiation were evaluated by light and transmission electron microscopy and immunochemical techniques. Pulmonary surfactant-associated apoproteins (PSAP) were initially expressed by type II cells at 16.5-day gestation in vivo. DEX-supplementation to the culture medium resulted in the accelerated expression of PSAP; the apoprotein isoforms (A1, A2, and A3) produced in vitro were comparable to those synthesized during fetal and postnatal in vivo development by high resolution, two-dimensional gel electrophoresis coupled with immunoblot staining. Cultures without DEX produced PSAP A2 and A3 isoforms, but did not produce A1 (26-31 kDa, pI 5.2-5.3). DEX-treated cultures produced more lamellar bodies within type II cells than non-treated controls. The results demonstrate that long-term cultures of embryonic lung primordia express morphogenesis, cytodifferentiation and the synthesis and secretion of PSAP in the absence of exogenous hormones or growth factors. The data set further supports the hypothesis that morphogenesis and type II cytodifferentiation are regulated by autocrine and paracrine factors intrinsic to the embryonic lung developmental program and independent of exogenous hormone controls.


BMC Developmental Biology | 2009

Salivary gland branching morphogenesis: a quantitative systems analysis of the Eda/Edar/NFκB paradigm

Michael Melnick; Robert D. Phair; Smadar A. Lapidot; Tina Jaskoll

BackgroundEctodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse Eda or human EDA are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized EdaTa(Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFκB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of Eda polymorphism.ResultsThe quantitative systems analyses do not support the stated hypothesis. For most NFκB-regulated genes, the observed time course of gene expression is nearly unchanged in Tabby (EdaTa) as compared to wildtype mice, as is NFκB itself. Importantly, a subset of genes is dramatically differentially expressed in Tabby (Edar, Fgf8, Shh, Egf, Tgfa, Egfr), strongly suggesting the existence of an alternative Eda-mediated transcriptional pathway pivotal for SMG ontogeny. Experimental and in silico investigations have identified C/EBPα as a promising candidate.ConclusionIn Tabby SMGs, upregulation of the Egf/Tgfα/Egfr pathway appears to mitigate the potentially severe abnormal phenotype predicted by the downregulation of Fgf8 and Shh. Others have suggested that the buffering of the phenotypic outcome that is coincident with variant Eda signaling could be a common mechanism that permits viable and diverse phenotypes, normal and abnormal. Our results support this proposition. Further, if branching epithelia use variations of a canonical developmental program, our results are likely applicable to understanding the phenotypes of other branching organs affected by Eda (EDA) mutation.


Pediatric Research | 1996

The glucocorticoid-glucocorticoid receptor signal transduction pathway, transforming growth factor-beta, and embryonic mouse lung development in vivo.

Tina Jaskoll; Henry A. Choy; Michael Melnick

Lung morphogenesis has been shown to be regulated by glucocorticoids(CORT). Because CORT has been primarily thought to affect fetal lung development, previous studies have focused on the role of CORT receptor(GR)-mediated regulation of fetal lung development. Although endogenous CORT increases during embryonic and fetal stages and exogenous CORT treatmentin vivo and in vitro clearly accelerates embryonic lung development, little is known about the morphoregulatory role of theembryonic CORT-GR signal transduction pathway during lung development. In this study, we characterize the embryonic mouse CORT-GR pathway and demonstrate: stage-specific in situ patterns of GR immunolocalization; similarity in GR relative mobility with progressive (E13→ E17) development; that embryonic GR can be activated to bind a GR response element (GRE); significantly increasing levels of functional GR with increasing lung maturation; and the presence of heat shock protein (hsp) 70 and hsp90 from early (E13) to late (E17) developmental stages. These results support the purported importance of the embryonic CORT-GR signal transduction pathway in progressive lung differentiation. To demonstrate that the embryonic CORT-GR directed pathway plays a role in lung development, early embryonic(E12) lungs were exposed to CORT in utero and surfactant-associated protein A (SP-A) expression was analyzed; CORT treatment up-regulates SP-A mRNA expression and spatiotemporal protein distribution. Finally, to determine whether CORT-GR-directed pulmonary morphogenesis in vivo involves the modulation of growth factors, we studied the effect of CORT on TGF-β gene expression. Northern analysis of TGF-β1, TGF-β2, and TGF-β3 transcript levels in vivo indicates that CORT regulates the rate of lung morpho- and histodifferentiation by down-regulating TGF-β3 gene expression.


Developmental Dynamics | 1998

Insulin-like growth factor II receptor, transforming growth factor-β, and Cdk4 expression and the developmental epigenetics of mouse palate morphogenesis and dysmorphogenesis

Michael Melnick; Haiming Chen; Sue Buckley; David Warburton; Tina Jaskoll

The B10/B10.A congenic mouse pair serves as a model for identifying specific genes related to morphogenesis and dysmorphogenesis of the embryonic palate and other organs. The present report describes our initial investigation of the Fraser‐Juriloff paradigm, which proposes that susceptibility to malformation results from genetically determined differences in normal developmental patterns. Specifically, we evaluated the relationship between Igf2r gene expression, transforming growth factor‐β (TGF‐β) activation, and cdk4 gene expression. By using in situ hybridization, RNase protection assays, indirect immunofluorescence, Western blots, and bioassays, we show 1) the presence of insulin‐like growth factor II (IGF‐II), IGF‐II receptor (IGF‐IIR), IGF‐IR, TGF‐β, plasminogen, plasminogen activators [urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA)], and Cdk4 in developing palates; 2) on embryonic day 14 (E14), which is a critical day for palatal growth, B10.A embryos have 82% greater IGF‐IIR mRNA than B10; 3) on E14, B10.A embryonic palates have a 57% greater level of active TGF‐β2 than B10, although the total TGF‐β2 is nearly identical; and 4) on E14, B10 embryonic palates have a 52% greater level of Cdk4 mRNA than B10.A palates, a measure of cell cycle progression. Because cellular activation of latent TGF‐β appears to require binding to the mannose‐6‐phosphate (M6P) binding site of the IGF‐IIR and is plasmin and plasminogen activator dependent, the positive correlation of IGF‐IIR levels and active TGF‐β2 levels seems to be key. Thus, the strain variation of TGF‐β2/IGF‐IIR‐mediated growth inhibition in late G1 phase would appear to account for the slower growth and development of B10.A palates relative to B10. Elevated corticosteroid (CORT) exposure in E14 B10.A embryos significantly increases TGF‐β levels, 87% of which is TGF‐β2, as well as the levels of active TGF‐β, 64% of which is TGF‐β2. Without exogenous CORT, B10.A embryos do not have clefts; hence, we present an outline of pathogenesis: slower growing B10.A embryos have an up‐regulation of IGF‐IIR, which serves to sequester IGF‐II from the growth‐promoting IGF‐IR and to bind more CORT‐up‐regulated, latent TGF‐β2 for subsequent plasmin‐dependent activation; higher levels of TGF‐β2 signaling down‐regulate Cdk4 and result in greater palatal growth inhibition at a critical stage of palatogenesis and, thus, cleft palate. We present an epigenetic model of information processing related to cell proliferation. The model is a dynamical network that uses continuous logic to learn its rules from changing conditions. Dev. Dyn. 1998;211:11–25.


Cells Tissues Organs | 2005

Meckel's cartilage differentiation is dependent on hedgehog signaling

Michael Melnick; Daniel Witcher; Pablo Bringas; Peter Carlsson; Tina Jaskoll

The hedgehog (Hh) signaling pathway has been shown to be essential for craniofacial development. Although mandibular arch derivatives are largely absent in Shh null mice, little is known about the role of Hh signaling during Meckel’s cartilage development per se. Mandible development is dependent on the morphogenesis of Meckel’s cartilage, which then serves as a template for subsequent skeletal differentiation. In this study, we examine the biological function of Hh signaling during Meckel’s cartilage development in vivo and in vitro. E13.5 Shh null mice present a small mesenchymal condensation in the region of a presumptive Meckel’s cartilage in the hypoplastic mandibular arch. By E15.5, the Shh mutant exhibits a mere remnant of the mandibular arch, without evidence of Meckel’s cartilage differentiation. Further, wild-type embryonic (E11 or E12) mandibular explants cultured for up to 5 days in the presence of cyclopamine, a steroidal alkaloid that specifically disrupts the Hh signaling pathway, exhibit a stage-dependent inhibition of Meckel’s cartilage chondroblast differentiation to mature chondrocytes. This phenotype can be rescued by exogenous FGF8, a downstream effector of Hh signaling. Taken together, our results indicate that the Hh signaling pathway is critical to Meckel’s cartilage ontogenesis and the rate of chondrogenesis, but not to initial primordium formation. The reliance on Hh signaling is stage dependent.


BMC Developmental Biology | 2001

The functional genomic response of developing embryonic submandibular glands to NF-kappaB inhibition

Michael Melnick; Haiming Chen; Yan Min Zhou; Tina Jaskoll

BackgroundThe proper balance between epithelial cell proliferation, quiescence, and apoptosis during development is mediated by the specific temporal and spatial appearance of transcription factors, growth factors, cytokines, caspases, etc. Since our prior studies suggest the importance of transcription factor NF-κB during embryonic submandibular salivary gland (SMG) development, we attempted to delineate the emergent dynamics of a cognate signaling network by studying the molecular patterns and phenotypic outcomes of interrupted NF-κB signaling in embryonic SMG explants.ResultsSN50-mediated inhibition of NF-κB nuclear translocation in E15 SMG explants cultured for 2 days results in a highly significant increase in apoptosis and decrease in cell proliferation. Probabilistic Neural Network (PNN) analyses of transcriptomic and proteomic assays identify specific transcripts and proteins with altered expression that best discriminate control from SN50-treated SMGs. These include PCNA, GR, BMP1, BMP3b, Chk1, Caspase 6, E2F1, c-Raf, ERK1/2 and JNK-1, as well as several others of lesser importance. Increased expression of signaling pathway components is not necessarily probative of pathway activity; however, as confirmation we found a significant increase in activated (phosphorylated/cleaved) ERK 1/2, Caspase 3, and PARP in SN50-treated explants. This increased activity of proapoptotic (caspase3/PARP) and compensatory antiapoptotic (ERK1/2) pathways is consistent with the dramatic cell death seen in SN50-treated SMGs.ConclusionsOur morphological and functional genomic analyses indicate that the primary and secondary effects of NF-κB-mediated transcription are critical to embryonic SMG developmental homeostasis. Relative to understanding complex genetic networks and organogenesis, our results illustrate the importance of evaluating the gene, protein, and activated protein expression of multiple components from multiple pathways within broad functional categories.

Collaboration


Dive into the Tina Jaskoll's collaboration.

Top Co-Authors

Avatar

Michael Melnick

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Haiming Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

George Abichaker

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Harold C. Slavkin

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Pablo Bringas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Parish P. Sedghizadeh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Daniel Witcher

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yan-Min Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Krysta A. Deluca

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yan Min Zhou

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge