Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tina Jeon is active.

Publication


Featured researches published by Tina Jeon.


NeuroImage | 2010

Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease.

Richard King; Brandon Brown; Michael Hwang; Tina Jeon; Anuh T. George

Fractal analysis methods are used to quantify the complexity of the human cerebral cortex. Many recent studies have focused on high resolution three-dimensional reconstructions of either the outer (pial) surface of the brain or the junction between the gray and white matter, but ignore the structure between these surfaces. This study uses a new method to incorporate the entire cortical thickness. Data were obtained from the Alzheimers Disease (AD) Neuroimaging Initiative database (Control N=35, Mild AD N=35). Image segmentation was performed using a semi-automated analysis program. The fractal dimension of three cortical models (the pial surface, gray/white surface and entire cortical ribbon) were calculated using a custom cube-counting triangle-intersection algorithm. The fractal dimension of the cortical ribbon showed highly significant differences between control and AD subjects (p<0.001). The inner surface analysis also found smaller but significant differences (p<0.05). The pial surface dimensionality was not significantly different between the two groups. All three models had a significant positive correlation with the cortical gyrification index (r>0.55, p<0.001). Only the cortical ribbon had a significant correlation with cortical thickness (r=0.832, p<0.001) and the Alzheimers Disease Assessment Scale cognitive battery (r=-0.513, p=0.002). The cortical ribbon dimensionality showed a larger effect size (d=1.12) in separating control and mild AD subjects than cortical thickness (d=1.01) or gyrification index (d=0.84). The methodological change shown in this paper may allow for further clinical application of cortical fractal dimension as a biomarker for structural changes that accrue with neurodegenerative diseases.


Cerebral Cortex | 2015

Development of Human Brain Structural Networks Through Infancy and Childhood

Hao Huang; Ni Shu; Virendra Mishra; Tina Jeon; Lina F. Chalak; Zhiyue J. Wang; Nancy Rollins; Gaolang Gong; Hua Cheng; Yun Peng; Qi Dong; Yong He

During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brains structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers.


Cerebral Cortex | 2013

Coupling Diffusion Imaging with Histological and Gene Expression Analysis to Examine the Dynamics of Cortical Areas across the Fetal Period of Human Brain Development

Hao Huang; Tina Jeon; Goran Sedmak; Mihovil Pletikos; Lana Vasung; Xuming Xu; Paul Yarowsky; Linda J. Richards; Ivica Kostović; Nenad Sestan; Susumu Mori

As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns.


Cerebral Cortex | 2016

Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain

Miao Cao; Yong He; Zhengjia Dai; Xuhong Liao; Tina Jeon; Minhui Ouyang; Lina F. Chalak; Yanchao Bi; Nancy Rollins; Qi Dong; Hao Huang

Abstract Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small‐worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting‐state functional MRI and voxel‐based graph theory analysis to systematically investigate the topological organization of whole‐brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high‐order default‐mode and executive‐control regions. The hub and rich‐club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth.


NMR in Biomedicine | 2014

Quantitative assessment of global cerebral metabolic rate of oxygen (CMRO2) in neonates using MRI

Peiying Liu; Hao Huang; Nancy Rollins; Lina F. Chalak; Tina Jeon; Cathy Halovanic; Hanzhang Lu

The cerebral metabolic rate of oxygen (CMRO2) is the rate of oxygen consumption by the brain, and is thought to be a direct index of energy homeostasis and brain health. However, in vivo measurement of CMRO2 is challenging, in particular for the neonatal population, in whom conventional radiotracer methods are not applicable because of safety concerns. In this study, we propose a method to quantify global CMRO2 in neonates based on arteriovenous differences in oxygen content, and employ separate measurements of oxygenation and cerebral blood flow (CBF) parameters. Specifically, arterial and venous oxygenation levels were determined with pulse oximetry and the novel T2 relaxation under spin tagging (TRUST) MRI, respectively. Global CBF was measured with phase contrast (PC) flow velocity MRI. The proposed method was implemented on a standard 3‐T MRI scanner without the need for any exogenous tracers, and the total scan duration was less than 5 min. We demonstrated the feasibility of this method in 12 healthy neonates within an age range of 35–42 gestational weeks. CMRO2 values were successfully obtained from 10 neonates. It was found that the average CMRO2 in this age range was 38.3 ± 17.7 µmol/100 g/min and was positively correlated with age (p = 0.007; slope, 5.2 µmol/100 g/min per week), although the highest CMRO2 value in this age range was still less than half of the adult level. Test–retest studies showed a coefficient of variation of 5.8 ± 2.2% between repeated CMRO2 measurements. In addition, given the highly variable blood flow velocity within this age range, it is recommended that the TRUST labeling thickness and position should be determined on a subject‐by‐subject basis, and an automatic algorithm was developed for this purpose. Although this method provides a global CMRO2 measure only, the clinical significance of an energy consumption marker and the convenience of this technique may make it a useful tool in the functional assessment of the neonatal population. Copyright


Cerebral Cortex | 2016

Structural Development of Human Fetal and Preterm Brain Cortical Plate Based on Population-Averaged Templates

Qiaowen Yu; Austin Ouyang; Lina F. Chalak; Tina Jeon; Jonathan M. Chia; Virendra Mishra; Muraleedharan Sivarajan; Greg Jackson; Nancy Rollins; Shuwei Liu; Hao Huang

We hypothesized that the distinct maturational processes take place across different cortical areas from middle fetal stage to normal time of birth and these maturational processes are altered in late third trimester. Fractional anisotropies (FA) from diffusion tensor imaging (DTI) infer the microstructures of the early developing cortical plate. High-resolution DTI of 11 fetal brain specimens at postmenstrual age of 20 weeks (or simplified as 20 weeks), 19 in vivo brains at 35 weeks, and 17 in vivo brains at normal time of birth at term (40 weeks) were acquired. Population-averaged age-specific DTI templates were established with large deformation diffeomorphic metric mapping for subject groups at 20, 35, and 40 weeks. To alleviate partial volume effects, skeletonized FA values were used for mapping averaged cortical FA to the cortical surface and measuring FA at 12 functionally distinctive cortical regions. Significant and heterogeneous FA decreases take place in distinct cortical areas from 20 to 35 weeks and from 35 to 40 weeks, suggesting differentiated cortical development patterns. Temporally nonuniform FA decrease patterns during 35-40 weeks compared with those during 20-35 weeks were observed in higher-order association cortex. Measured skeletonized FA suggested dissociated changes between cerebral cortex and white matter during 35-40 weeks.


NeuroImage | 2012

Regional changes of cortical mean diffusivities with aging after correction of partial volume effects

Tina Jeon; Virendra Mishra; Jinsoo Uh; Myron F. Weiner; Kimmo J. Hatanpaa; Charles L. White; Yan D. Zhao; Hanzhang Lu; Ramon Diaz-Arrastia; Hao Huang

Accurately measuring the cortical mean diffusivity (MD) derived from diffusion tensor imaging (DTI) at the comprehensive lobe, gyral and voxel level of young, elderly healthy brains and those with Alzheimers disease (AD) may provide insights on heterogeneous cortical microstructural changes caused by aging and AD. Due to partial volume effects (PVE), the measurement of cortical MD is overestimated with contamination of cerebrospinal fluid (CSF). The bias is especially severe for aging and AD brains because of significant cortical thinning of these brains. In this study, we aimed to quantitatively characterize the unbiased regional cortical MD changes due to aging and AD and delineate the effects of cortical thinning of elderly healthy and AD groups on MD measurements. DTI and T1-weighted images of 14 young, 15 elderly healthy subjects and 17 AD patients were acquired. With the parcellated cortical gyri and lobes from T1 weighted image transformed to DTI, regional cortical MD of all subjects before and after PVE correction were measured. CSF contamination model was used to correct bias of MD caused by PVE. Compared to cortical MD of young group, significant increases of corrected MD for elderly healthy and AD groups were found only in frontal and limbic regions, respectively, while there were significant increases of uncorrected MD all over the cortex. Uncorrected MD are significantly higher in limbic and temporal gyri in AD group, compared to those in elderly healthy group but higher MD only remained in limbic gyri after PVE correction. Cortical thickness was also measured for all groups. The correlation slopes between cortical MD and thickness for elderly healthy and AD groups were significantly decreased after PVE correction compared to before correction while no significant change of correlation slope was detected for young group. It suggests that the cortical thinning in elderly healthy and AD groups is a significant contributor to the bias of uncorrected cortical MD measurement. The established comprehensive unbiased cortical MD profiles of young, elderly healthy subjects and AD patients at the lobe, gyral and voxel level may serve as clinical references for cortical microstructure.


Methods | 2015

Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging

Austin Ouyang; Tina Jeon; Susan M. Sunkin; Mihovil Pletikos; Goran Sedmak; Nenad Sestan; Ed Lein; Hao Huang

During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.


NeuroImage | 2017

Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI

Minhui Ouyang; Peiying Liu; Tina Jeon; Lina F. Chalak; Roy J. Heyne; Nancy Rollins; Daniel J. Licht; John A. Detre; Timothy P.L. Roberts; Hanzhang Lu; Hao Huang

ABSTRACT The human brain develops rapidly during 32–45 postmenstrual weeks (PMW), a critical stage characterized by dramatic increases of metabolic demand. The increasing metabolic demand can be inferred through measurements of regional cerebral blood flow (CBF), which might be coupled to regional metabolism in preterm brains. Arterial spin labeled (ASL) perfusion MRI is one of the few viable approaches for imaging regional CBF of preterm brains, but must be optimized for the extremely slow blood velocity unique in preterm brains. In this study, we explored the spatiotemporal CBF distribution in newborns scanned at the age of 32–45PMW using a pseudo‐continuous ASL (pCASL) protocol adapted to slow blood flow in neonates. A total of 89 neonates were recruited. PCASL MRI was acquired from 34 normal newborns and phase contrast (PC) images from 19 newborns. Diffusion tensor images (DTI) were acquired from all 89 neonates for measuring cortical fractional anisotropy (FA), which characterizes cortical microstructure. Reproducible CBF measurements were obtained with the adjusted pCASL sequence. Global CBF measurement based on PC MRI was found to double its value in the 3rd trimester. Regional CBF increases were heterogeneous across the brain with a significantly higher rate of CBF increase in the frontal lobe and a lower rate of CBF increase in the occipital lobe. A significant correlation was found between frontal cortical CBF and cortical FA measurements (p<0.01). Increasing CBF values observed in the frontal lobe corresponded to lower FA values, suggesting that dendritic arborization and synaptic formation might be associated with an elevated local CBF. These results offer a preliminary account of heterogeneous regional CBF increases in a vital early developmental period and may shed the light on underlying metabolic support for cortical microstructural changes during the developmental period of 32–45PMW. Preterm effects and limitations of pCASL techniques in newborns need to be carefully considered for interpretation these results. HIGHLIGHTSCBF increases heterogeneously across cortical regions in preterm brains.Adjusted pCASL MRI could yield reproducible CBF measures of preterm brains.Global CBF doubles its value during the 3rd trimester.Regional CBF measures were correlated with cortical microstructure.


Frontiers in Neuroanatomy | 2015

Synchronous Changes of Cortical Thickness and Corresponding White Matter Microstructure During Brain Development Accessed by Diffusion MRI Tractography from Parcellated Cortex.

Tina Jeon; Virendra Mishra; Minhui Ouyang; Min Chen; Hao Huang

Cortical thickness (CT) changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM) axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI), especially fractional anisotropy (FA). We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 and 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, including Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46, and 47, decreased significantly and heterogeneously; concurrently, significant, and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis, and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for understanding the underlying mechanisms of developing brain circuits and structural abnormality associated with mental disorders.

Collaboration


Dive into the Tina Jeon's collaboration.

Top Co-Authors

Avatar

Hao Huang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Virendra Mishra

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lina F. Chalak

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Minhui Ouyang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Nancy Rollins

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin Ouyang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hanzhang Lu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge